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Figure 1.2 Plot of a training data set of N =
10 points, shown as blue circles,
each comprising an observation
of the input variable = along with
the corresponding target variable
t. The green curve shows the
function sin(27x) used to gener-
ate the data. Our goal is to pre-
dict the value of ¢ for some new
value of z, without knowledge of
the green curve.
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Figure 1.4 Plots of polynomials having various orders M, shown as red curves, fitted to the data set shown in
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RMSE ( rooct m™meon <quare error)
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Figure 1.6 Plots of the solutions obtained by minimizing the sum-of-squares error function using the M = 9
polynomial for N = 15 data points (left plot) and N = 100 data points (right plot). We see that increasing the
size of the data set reduces the over-fitting problem.
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Figure 1.5

Table 1.1

Graphs of the root-mean-square
error, defined by (1.3), evaluated
on the training set and on an inde-
pendent test set for various values
of M.

Table of the coefficients w* for
polynomials of various order.
Observe how the typical mag-
nitude of the coefficients in-
creases dramatically as the or-
der of the polynomial increases.

—©— Training
—©— Test

0 0 3 M 6 9
o

M=0 M=1 M=4§ M=9
wy 0.19 0.82 0.31 0.35
wy -1.27 7.99 232.37
w3 -25.43 -5321.83
wk 17.37 48568.31
w -231639.30
w? 640042.26
w? -1061800.52
wk 1042400.18
w -557682.99
i 125201.43
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Figure 1.7 Plots of M = 9 polynomials fitted to the data set shown in Figure 1.2 using the regularized error
function (1.4) for two values of the regularization parameter A\ correspondingto InA = —18 and In A = 0. The
case of no regularizer, i.e., A\ = 0, corresponding to In A = —o0, is shown at the bottom right of Figure 1.4.
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coloured boxes each containing fruit
(apples shown in green and or-
anges shown in orange) to intro-
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-
('\
w
¢
\
})

~

0

ororgR

®

appl

ofe




Su ppose

the

blue

P‘(ch o~ |oox V‘omwiomly ond

box,

Phabasb.( Ity o (F= “Ffle )

P(F: aPFle ‘ B = b[ue) —

P(F=ax [B=F) =

PQF:O l B=1r)
PCF=o| B=b)

PCF=o | B=b)

£l— €lw Hw €k

|

t  Burns

3

—

OM't ‘bc be,

Aven (B = blue)



PCEF=a) = pPCF=a| B=F) PCB=r) + PCF=&| B=b) PLE=h)

L 3 & I
// = ;,_X o + -l’zx o = 3o
Sum _
PCE=n, B=¥) T peF=a, B= >
blue
| ..3. ohznga

2o

&l

B C box)

F (k)

5~ |3l £




FLF:Q) — —3..
20

PLB=Fr
o, 0> PCE=ol| B=
F=0) B=r) PlB=r
PCF=0) )‘

—
-

\l

PLB=F(F=o)

1

=
3



Tnterpretodion o Boyes’s theorem

PCB)  prier  probability  (cq box 3 g g Al
( probability ovailable before we observe Hhe identity of the
Lruib )

PCBL F) Fosterior- Phobabil?“by

(orYg 33U 3 AT box /R)



Yondom vt bl es

PCxX,Y)

PCY (x)

o
-

A ond

¢

{
q

= PCx)p LY)

PCY)

ond

k

oe  InRpenhdet

PLX 1Y) =

p(Y)

POx)




.21 Probability density
C ontinuoug vorioble open {v\‘&r\/o\l

‘7( reol volued varable Sedling in CX, X*SI—O = @SX
pOL) Sy
when Sx s SuFST c,‘(en‘l:\y smodl

PLY)
& T

o

X Lk §X Y Y+sy

Xt g PCY ,y<&7) = f)sy



P X) HS colled the pro bobu | (’L]’ éQ/\s("l))r over X

/ pcxe Cab)) = S: PO X
pPCLL) 20
\ S'_: pcx) dx = | Py CY) 8y = P sx
X
8y
Consider a o'nom%, sy voriobles.
Py CY) SR A
Bisetive Function ! - °
x.= gLy) y oyt $Y Zx xs(-gx
RCY. Y5$y) = P Caw),3Ly+sy)) * - Yresyy

RY) Sy =~ p,CxX, X & 35X )-‘-' Px OO & X



Son = Fean)
Find the w]ens'd:)' PY cy)
CXt&X) s tbronsSormed ints the ronge LYy, Y£3Y)

Pet®) 8L = Py iy SY

= PeC %) | 3'en)

Cumu \adsive \0""@' $Ma.l(

e ], €D

&enc'rlzy



Multi variobe  continueus  voriobles L,. X densted by X%

Jont  probebility dRensity PUH = pex,, Xy, ... Ap) st

PC muti. variable Solling  in an  lnfinitesimal

volume &% con‘boin‘m@_ 25() I@

~ PwW & x

pex) ¢ real wined

Mault vartote pm\oasbili'l;f density S urtion
[ PexeE) = [ pory meosurohle seb E & R
PC#) 20 X /
\ /
= /
S\ 4 P dx = | 67)

X sx



We., con so consider Jourt Frobmbi l'd:y dictn butions over

combt nati on 0‘5' discrete oand continuous

In the diswete cose

px) s cwlled  probobilidy  mess Sunction



J].2.2  expecbations om covariances
Voroble X under o probebility  distribubion  PLO)

MmosS  or Jens'r\:y

Expectation ofF FW)
1n dis crete Couse,’

EC5]:= 2 Pw Fw) ( weighted mean )
x
Tan continuous cose

EC$]:= S pex) FCx) 4



Rouw‘ow VOo\r .W\.He x.

Ex Pectm‘b'con oJ p ¢ denoted b y

Jdiscrete ECxX]:= 2 p™ X ( $cx) = X)

£

continyous = S PCx) X 4%



eEC5] Con be &mefimm'E%J os & Sinite sum (N so.w{:les')

N
Elsl = 5 X Su) ( Morte Corlo  TLrbegration)

Averoge of the Suncbion  SxXy) wnt  disbrbution & x
E,CStxy)] = { Suxry) poo dx
(_Function ¥ Y)
( or %_. Swy) pew >
Conditionx| 2ex Fe,c'(:ocbzor,

E,LF1y] = [ S pixiy) dx = T patly) Fou
X

(Sunction oF Y)



VO\P‘\O\VICE, 55' 5‘(1) exp. 0-5. 'f

4
vor ($]:= E[ (5w - EC(5w0]) ]
- = E0 §0%1 - ECf0]”

As ETX], VarCxX):= ECCx-ECx1Y ] (Fw==x)

Two  vVoreble¢ X o Y covoriante s eFined by

v [X,y] = E*v [ 4 ©~ECx]} 1)/—-&‘\:73}] X 2+ Y ?F
AeY)
P = By,

If X omd Yy oare indpendent, CcovCA,y] =o0

SS Xy @‘\L\‘Y = {{=xy pov podx dy

ookt g

Cxy) — €CxJ ECY] HAE e 7t



Two vecbors o rondom  varobles % ow ¥ € lRD.

let §) be oo multivoriable Suncton (on be veckr Sunction )

ECS] = I po¥) S = ) 5@ puwix
St = %
I 'S'CJSC) s o \Rctor Sunc‘bion, BECS]) & a vecko o

Covmionce moabrr € defined by wp

cou C#, Y= By, LA%-ETAIP 4YT- ECYTIE ]
PXD ' Pri

90‘”‘7) = ‘Em,,, CxV¥YT] - €C2] ECYT]

Vo C#J oV C#rﬁj

M Ccomponest

— 'I;HYJ 2| \I‘OU"'(omce‘



[.2.3 Baye stow probaobi ity

C
CYlx) = pCxIY) Py © PexY)
P R PCx)
cA
| W pw W
posterior PCYIX) oC PCx(Y) PLCY)
- W N L
A I\ keli hood prier
Ard RE
G AT

P b, . Ot

W]



Clossi cal Srequentst Vs

— frequencies of rondom
Crep eotoble events )

cioled &7+ 3 @H
over — Sittingy

ue ok ARROE MEH TIdZ BXE s

238 o 2BHA ONZ Ik i BrE

Ba»y es‘(cm

quoantiFication of uncertainty

e

AYZE 7+ WghS oy

“‘%”d‘ AL R ey elod

%3



Poly nom{ o ‘f'?’ffﬁﬂg. curve,

Aim 1o predict W = Lwo,w, ... W)

VOX, Wiz We + WX £ -~ Wg X (M-t orer)

Pefore  observing. dote  assume w is in the Sorm

The eSfect of pP=4t.., Bul v expressed  through Prior




Unc_erjbin'\:y n w  ofter we houe observed D

PO?&HQY- |eel; hood PriOYF
PCw| D) = PCDIW) pPLw)
— — Pco)

—_—

Since dobo seb D g given  PLPIw) s a Sunction
of W called PCp W) likelihood Hfunchen WG %éér

Remark

— PCLDIlw) & not o prob, distrbution over W

_ 5 PLD (wr) F(_WI) dw # | SP()(\Y)AX = |\

§ PCXiv) QY # |



— PWP) con be seen as o normalization  constourt
—  Likel! hood PCDIW) has an  impotart role  both
PP roaches

POS"(:erior O  likelthood % prior

Frequentist ( point ectimator )

— W is considered to  be o Fixed povoneter  whose

volue 1§ by some Lorm  of est! moctor



Boole;; on (_ distr bution esti Ma\"bOf‘ )
— Thee & only o single dotn sebt D and  uncertaunty
in the porameter i  expresed  through a  probebility

distribution over w

W 8%

=V

2
[ ] VV/ML °

Srequentist Boyesion



Bl Ol ZFT AFESE: BRB: Mogimum  ikeli hood

-

erroyr func:ﬁon = — [ kel kood or —‘l°9- C lilce,li hcod)

Remark (HiOIRQF2] E

— AP M4 (AR BT) S ZE e ol g-adE A 1T

— Bt QuULAeT A RTE AW ATl DT
ABtx TGS REABHAL ALEK  ( conjugote)

— Ze2AQ 2|Ho| Zy UrAjoll ®B-O3

—  Margnali >afion (ZFHE‘,zil‘) over Wy '!]é R



|.2. ¥  Growussian Jistr bution

Rea\ - valued erzﬂlole f., Graw\gs'\o\n dlg‘tﬁ bution © deff;ne.v,

by
|
Wexipois T o g el e
A unmo] (SR
/\A

/\A‘. Mean s> Vorl an ce C 2 Pmme.’(:ers )



c~

Observe

ceton

-~

==

stardard  deviabion

4

AN XM ) So

Do 2
Y AL M,y dx =

ECx] = 5: N M, T2) Xdx

>

EC¥]= § = wwcpmeh x* dx

(7o)

VwCx] = ECX I~ Ecal = &>

o
o

-—y,
——

(§= L. Frec‘cslow

b

/A

Mot



let L= S: exFQ-—l-zx‘) 4%

11:' 5-—: S..: exp( - x—j—;,_xfz) exp (- ;_lg..:. r*) dx Jdy

Fe = cos &
=)0 e (- — ) rdrde e
’ 7 257> YQ\"QMB'
— oo ( N
= ep (— —zr)rsr
2
— 22xr O

= L= {x&x o



D—dmensiona| multivariabe  Craussian  distribution

ACxr M )= . s
M) ClR)D/ I'ZIV
. Ix P
ée'Eem\l\amt
M mean  vecter | T . covarimm®  pmabrix
(See_ lber | )
D
X € R rondom

UAP

-1
exp ]~ g B T G~

DX|

COXD)

veco

o



N scalar voviables X,,.. Xy ] LeG x=CX,, .. 'I,V)T

A ssume > Y ore drown Srom a  normal  Jist.

How to  5ind the porawmeters M ond ©°

( povrom ebric nSerence )

X, e S own Pleg Ehe same diskrbubion  nd Pe,nden'l:l)r CAA)

N
pexipm ey = I NCxa | 4,000
=\

[y o ‘
‘ ‘ke[' A Figure 1.14 lllustration of the likelihood function for 4

a Gaussian distribution, shown by the
red curve. Here the black points de- p(z)
N o ¢ note a data set of values {z,}, and
Mmc,( m( 2L l (hefl: ‘\OOd the likelihood function given by (1.53)
corresponds to the product of the blue
values. Maximizing the likelihood in-
volves adjusting the mean and vari-
ance of the Gaussian so as to maxi-
mize this product.




MOX(M( S | L kel hood S MoXiMm(De le & C likeli hood)

\ Y 2 ~ N
0r PLRIM, S = - Soo D Xa—MT - > Qp ot - - La (2%)

/ n={
%, - ) \_/Cons'!:o 1

N
/MML = -AI_/- > X, C scw-?le meon )

T - M) ¢ somple variance)



NCXIM, )
s:‘og N ond somMe, J‘LG";. /A ML ard 6;:': e :F(Ar\ctzOng

oy the choice X Ky
EC/"MLJ = /"‘ unbirsed

(=) =

EC My d= EL g T %] = L ZECN]= M




]. 2.5 Curve  Sitting (e — viscted)
Prebabilistic perspective

fnpu't velue X toaregt  wplue t

]

N ir\Pu'(: values w= CX, .. IN)T

t '('.our-gd: " + = CH,. “b‘y)T
P"QN"(CB -bowad: value + Sor some new inPu‘b XL

Express  uncerbunty over tomet t using  prob.  dist



Assume.

)
pLt | X, W, ) = N CEycX,w), =) CLL60)
Figure 1.16 Schematic illustration of a Gaus- 4
sian conditional distribution for ¢ given x given by t

(1.60), in which the mean is given by the polyno-
mial function y(x, w), and the precision is given
by the parameter 3, which is related to the vari-

ance by g~ ! = 2.

y(wo,w)

Lo X

((t: TIZOl yexw O2 HALO| 7 Q  Crousion



Determine W ad {5 by MLE

Assume, dotx X od 4 a8 Jdrmwn anepem}sz,n'b’f From (l.40)

N

pct [ %, w,p) = T N (%al Y CXa, W), T )
\/ n=t by Jef
ossumed o 3
be Sxed = (zﬁ,‘) ex|>{ -8 Cyom,wy —tn)

Mot mi 22, ‘ﬂ- |\ keli hood wrt w/ ond ﬁ

it 2 N N
ln PCEl %, W, 3) = v{-%“ycxnf“”)’t“k T T W f ~3 202N
solutions  For Waue , (P /
S —

Yeg, wiy, K



Powt  predicdien C nt use g2, )

Yo, W, )

\

New in Put’ p & . t:

D isbr butien Pr'ed'(c.‘tion C not Bayes{ o )

PUE [ X, Wi, By ) = N Ub LY O W) , B, )



Take o step towards o more  Boyesiwn aypmach

Pr"(c\r- Yt bution over N AS Lthe  Sorw Qa 0)
M

- o=~ z— — —
pew | ) = MLw e, x'T)= (=) exp { —2 ww
whevre { s a Pve D(S(on ond M +| S X of c.oe'ff W/
C YWXXw) M th or<sr poly nomial  Wo W | W)

X & called kyperPau-N\«e:l:er C prrowmeter oY  poroweter)

PAw | %, &, X, ) 0T PLEIX, W, 3) PLW [X)
| (eeliheod



Cloled{ K. # o0 cHM IhgAdol (2 w 2 3k
Marimze  posterior Jistribubion  C MAP  mMoximum  posterior)

= X

. E > 4y w — b > w'w
Minimi2e 5 “Z( Y Cxa, W) T =



[.2.6 Boyesion cwurve Sibting

We kil make & pouit esblmabe o W/

Tn & Sully Bayesion opproach, we should  opply  sum ond
prodqct rules ofF pro bobi 1iby So we need bo ntegrode

ower ol velues oF W C Marginadt 2abion )

Compared  with MAP C moximize posterior)  we will use
post=rior P\LWI ﬂ,i) C# ¥ boining dator get)

ov“ 'm{‘o\rmﬁ on



Predict +the wlue oF + For a new test poiit X

= Swluste p Lt X, %,4&)

CAHZS X ol CH3- oz 7k £ 21 BF 27 CiloNgH
B g

MNow & o9 (B ove assumed Ho  be given and  Sixed

P, &)= J PLEIX, W) pCW | %x,4) dw
/ posterior
Cl1.60)
ANLEL Y, W), )

OL'BQ(MMF'EZQI\



annlytially  lober, The result

.
p k) =
%) = & el
2 -‘ »

Nn=\

I

un(t wma

rix C M+ Jiw ),

§CI-)=C.¢,UO, R . y

‘ " ; Lo



Reawll  astumptione

M|
.-‘
— Prier Jdlstribution over W Pwin) = NCwlO, x L)
N
_ nkcl”\wd . PLE | % W, 3) = T M Chal Y CXa, W), (gﬁ\)
Ny

— Pcsberior pew | x4, %3 oC Pl %k W, (%) PW (X)

P%ll,#rthj PLEI, W) PCW | &,4) du

(
/ likelihood oF Cingle point

Q‘QFQI\ it of X



Curve  Sibting

yexwy iz T Xw (M $ixed) -
Set  ony  error Sunchion Assume  t ~ ALt yCx,wd, %)
ae' N |
Fid W™ st Nkelihood TT A Cbn | YUXa, W), 7p )
N(
M‘(f\.!w;(ie, error 'func:t‘ton Pr‘(or W o~ N LW/ lo, o(‘ I—)

Y X, w*)
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Figure 1.18 The technique of S-fold cross-validation, illus- ‘:l
trated here for the case of S = 4, involves tak-

run 1

ing the available data and partitioning it into S
groups (in the simplest case these are of equal
size). Then S — 1 of the groups are used to train

a set of models that are then evaluated on the re- I:I: run 3

run 2

maining group. This procedure is then repeated
for all S possible choices for the held-out group,
indicated here by the red blocks, and the perfor-
mance scores from the S runs are then averaged.

run 4
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Figure 1.28 The regression function y(z), £
which minimizes the expected t
squared loss, is given by the
mean of the conditional distri-
bution p(t|x).
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Figure 1.29 Plots of the quantity L, = |y — t|? for various values of q.



/' 6 In'fOYWﬂCtzOr\ Theo'~7

Discrete rondom voriable X

The oameurt of information can  be view as 'c)egree, of gu{)riger
on learming X = 7H5Ad L2 AR2ioif 37 ek
A730) MAN Y oM kR R

Meosue oF inSormation depends on peX)



LlC*) express the \nSormation contert
Consir the unrelabed Cindependent) evedts X, ¥
hexyy = hew + heyy A7 ohg Q01 g o R¥e| F

B ofurg oo AL ReTy

( When X ILY |  PWX.y)= P poyy )
| eC ‘ ‘

hex) i = — lOtQ_LPCX) . ( omeunt o inFormaction )
Eatropy AR Miol| WER3E

HCx] = - 2 pwx) cX)
/i x P lo%'ﬁ—P 'ﬁ%ﬁ ( D\CH) A1 "/\523

EChewy]



Take  poyle pov) :=o0
Eg. discrete rmadom

C length 3 bibs )

when

vartable

\
D Unidorm prb CEF, ..

R{xXJ] = -8«

\ |

® b (3,%,% T6
HCX] :2,_

Y ee [

pcx) =0,

L hoving- & possible stotes

—r~
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