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lllustration of one step of sequential Bayesian inference. The prior is given by a beta distribution

with parameters a = 2, b_= 2, and the likelihood function, given by (2.9) with N = m = 1, corresponds to a
single observation of x = 1, so that the posterior is given by a beta distribution with/Jarameters a=3,b= 2.
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Figure 2.6 Histogram plots of the mean of N uniformly distributed numbers for various values of N. We
observe that as N increases, the distribution tends towards a Gaussian.
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2.3.1 Conditional SGaussion dist ri butions
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Figure 2.9 The plot on the left shows the contours of a Gaussian distribution p(z,, z,) over two variables, and
the plot on the right shows the marginal distribution p(z,) (blue curve) and the conditional distribution p(x|xs)
for x, = 0.7 (red curve).
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2.3.2 Margiral Gaussion distnbutions

Cang‘(&k the S'O“OW‘('\%. M&Y‘@i nal tns‘l:r“(bctt‘(on /VCXI/A‘ :)

B M
Plta) = § Pl*a %) %, >,¢=(>}(b —_

(b 3 2} G2 Hae T S TR

SW;QQ7'- Socus  on quN}de:'cc form  oF exFonen‘lr and Hmtify
the mean vedbor ond  covaroance mabrc  of P O

-\ N Nob
Recdl  (2.09) T = A= (e ng)

\ sV g~
— z CE~pM) T CE-MD

\ — ML) A - Ml il -t)T/\ C %p = M)

— = (¥ —M»)T Npo (Fo = M) — "%Uf(b ’/‘"b)T/\bb CKp -~ piy)



T.n oraey- to ‘\n‘be%rv\'be out ﬂb, P‘\G\i out those ‘|:€Y'MS
involving. %,

v T T _ A \T -\
~ 5 %y Npp K ¥ K, ML= "‘zliu‘b"/\bb M) Ay CRp = Ay, M)

(>-8%) A .
+ 2 mT Npp ™ (Square expression)

iabp. of %o

where m = Ay /‘“b ~ /\ba- (K — M)

For  pita) = § pida, ) 48y

(2.86) 5 exp “ "'-?-‘:(.X(b —/\b: M\)T /\bb Chp — /\b: W\l)% b/ 38



which s an inverce ©oF +he normalidation wef§icedt.
As seen beSore  this wes§iuent & independernt of meon
Combining the lost term (3 mARm) i (28 with remining

terms \n C2.N0) &epend‘mg on Ha, we obtrin

L

T
5 miT Ab: m - ‘é_“ %o Ao.a. oo + )5(: CA&kMa\. + /\a-b /M(b) + congtant

S

T A

= =3 [Am My = A CFa = Ma)] Ay [ Abb My = Aps L = Mo ]
+ ﬂ: CA&&Ma\. + /\a.b /‘Mb) t C,Oﬂs"bw\t

R — A T ~ -\

— T %a C/\aa. Ao\b bb /\bo\. ) Ko ¥ #a\ (/\M /\oub Abb /\bm)/wa.

+ onstant



Rewll 4he e.xPev\e,n"b n D-dw Goussion con be wntten

—logop) T exmmy = L T x4 KT 't constant

Denste the covorionce &  pos) by 2, ond 2, U
given by ~ - g

Similorly,  Mmean vecter i given by




To ‘w, ( -\ -\
S wmpliSy T Chaa= Aoy Ay Ayn)

re.cll ( APS /\ab} ) (Zm zab)
Noee /N b Yo 2 bb

ond  use  (2.N¢) e.><‘>lr~e.9;°\0ﬂ of the inwrse & o Pa.r’l:'rb}one;é

/\@>

Mot _
o= Chaa =Ny Ay /\ba)

Tkus we kave 19 Cyo:] — M‘O\ cov( ”‘a] -

wheve PLKa) = S PCha, Kp) d’ﬂb



NCRI M, T) with Ai= I D=dim %K

) el (2
Zpn Zpb Moo Npio

Conditioned  distribution
pCtalty) = A Ckal Muy, Ao )
Math = py = Noo Ny Loy = M)
Morginal  disti bution

PUta) = N (Ao | Ma, 2 s )



Ty ,,.
zy = 0.7 2w p(Tq|zy =0.7)
0.5} 0 - 51
p(xaaxb)
(! »
0 ' 0 .
0 0.5 2, 1 0 0.5 i 1

Figure 2.9 The plot on the left shows the contours of a Gaussian distribution p(z., x) over two variables, and
the plot on the right shows the marginal distribution p(z,) (blue curve) and the conditional distribution p(xq|xs)
for z;, = 0.7 (red curve).



2.3.3 Baye,s’ theorem $or Goussion variobles
Lineor Crousion mol example

CGuusin  marg nal  Sist. PC¥) Graussion conditional dist PCLY 1%)

,

PLYIX) hs a mean as o lnear Juncbion oF %L ond

o covoriance  which s Endepe,ndent of ¥.

. - M - dim
(€. pLg) = ALk | M, N) #E ‘
Ye D —dwm

PLYIR = AV LY A%+b, L)

where M, Aad b ore PO\rG\MC‘Eet‘S g.ovew\‘moa, the means,

ad N ond L ore preusion mabnces,



We will §ind  PY)  and  PCKRLY). ’ PLK)
: o NOWN
margi nol condrtional PCY L 50

Leb %= (*) oy Us  onsder the Jeuit prb. st
VA
p) = PLY ¥ PLR)
Ln pCFY = Ln PUKY +  La POY 1 %) C2.102)

4
~ (Y -A%-b) L (Y-Ax%x-b) + const

%Y
This ¢ o quodratic Sunction oF the component of 3

hence Py 1« oo Goussian



ConSder Lthe sewnd term  In (2. l02)

B}
L AT CAFALAYK -2 YTLY + 3 YTLAX + %ALY

_.‘.(’5‘)-‘.(/\+ATLA _ATL)(X():_%?TR%

- 2Ny ~-LA L N,

¥ has predsien ( inverse o Covarioance ) mobriX agiven by

. (/\-l'ATLA —-ATL.)
= (\7) ~ LA L
- -\ ’\ T
= Covl %] = R\ = ( A - ~\A A . ) C2.105)
AN L7+ AN AT



ConsSder Lthe ltneow~ +term  (n C2. I0Y)

ATAM - ZTATLL +yT L = (%) ( AM-ATL":)

Y L b
. ErC2] = R"\(AM—ATLIB)
L lb
_ (¥ = M *
¥=( - ( o
V) A/u\+\b) y e e
Ar+b

Using. section 232 oand  peyy= § peayix
ECYI = AMm + b

covtyl = LM+ AN AT



NMow we on Sind an expression  $or  pLx 1Y),

ECKIY] = CA+ ATLAY { ATL LY =Bb) 4+ A |

\

oV X1Y] = CA+ATLA)



Marginal and Conditional Gaussians

Given a marginal Gaussian distribution for x and a conditional Gaussian distri-
bution for y given x in the form

p(x) = N(x|p, A7) (2.113)

p(y|x) = N(y|]Ax+b,L™ 1) (2.114)

the marginal distribution of y and the conditional distribution of x given y are
given by

N(y|Ap+b,L7' + AATTAY) (2.115)

NxIZ{A'L(y = b)+ Au},X) (2.116)

=

BB R
s
[

where
»=(A+A'LA) . (2.117)



2.3 Maximum likelihoed $or the  Craussian

Daba. st Y = (%.... %, )T . 1% W sowmples of D -dimensiona

Goussian . The log likelihood Sunction s given by

In PCK I M. T) K AXD  mobric

_ AP N | < T
= - WR) - alT -;g Cha= ) X o= M)

Mote thit  likelihood Function <®perds only on  the Sollowing two
Dx.D
N

d T
Z 5( n ﬂ'\ X‘“
=\

ns| r N

quam'&( {:'(es



-n\ese ove. kneun aS Cu TB"( < eﬂ'b' S"bkﬁgt; cs 50\“ G[tm S ;M

N -
V’MQMP(»);(l}‘l,t) = E Z‘an-)'“) P ~-dm VQ.C'\:DP

[ —

—_

Set  this %m&ent to ero vechor | we obto,

N \) [
/MM = A i )$Ln 9°‘u“\7t°h 6.‘:' l\:W(MMM
- N n= likelihood 25timoctor
(sample meon) MLE
NV T

2 _/b 2 U —piy,) C”\‘//“ML)

n=i

(_SQM?‘Q. At AN Ce, )



Remork
- L ML (n volues Mur

— Mue 6 ndependert & Ly,

Ewluote +the expectobions of  thes solutiens under Hhe true
d stribution Then we obtin
EE/AML.] - /A‘ unbiased estimate

EC T 1= 2'x biased



2.3.5 Sequentia| estimation

SeC\uen{:‘tau\ estimotion Sor maximum |ikelihood

The method allows  doban ponts +o be Froc,eed one ot time

od  then  discarded ad e  mpatant  Sor  on-line applications

Consi i

Mz

>
[

‘ ‘ )
whch we will denote by /WM(, based on A/ observotions



V)

M

(1

1)

(1

N |

Xn
n=\

1)
Ma

(|
CHp = My ) )
S— —
ror s‘\g.m\



Grenernl Sormulation  of  sequential learning. ( Robbins — Monro )
Twe Vv 2, & %ovemed by o Joint Jistrbution FQ2/&>

PeSne deterministic  Sunction ‘W b ¥
eq.

§wyi= EL210] = {2 paaiond ECt19
Htionol  expectotion

whidh s & Sunction oF & ( colled regresion Sunchbion)
Find  the 1ttt OF st which §(8%)=o0

Suppose  we @ observe values ofFf Y one ob o tiwme

Figure 2.10 Aschematic illu: t ation of two correlated ran- Y

dom bI d 0, to gether with the . ® ®
regression fun t n f(6) given by the con- . [
ditio | expectation E[z |9]. Th Rol bb 5- L)
Monro algorithm provides g ral sequen- °
tial pro edure for finding the t 6 of such b o
functions. e /e 0
h ° \0*
0| 2 o
—F °




Assume the cwonditional Vvortonce o 2 s Fintte )

o 2cs,
Eir’(% - 51 G'J <O BQV.D

9'* solutien F M)

and wWog SWd0 Sor 656F oad  F(B<0 Sor 6<O

A sequente of successive estimotes ofF the vost 6F gwven by

W) N -) CA=I1)
& = 6 -, 26 ) C2.129)

W) V)
Where %(,&N ) i on obwrved wvalue oF 2 when 6=0



{&N? \r-ePresen‘bS a seq of positve numbers  sabisSywng

Lm & =0

N>

z l

z aﬁ/ - o0 e.%_, Z—/

N=\

L P}

Y oy & o0

A=\ s 5(6)

By [ Robbies - Monro]  (212Q) converges o the oot wibh
PTO\)&U(‘H;)’ one
Remwk

— T hs‘ r& o né'( .t" on ensures -kha;b nkhe oLUMU \Q.-l;eé No ‘( se M

Snite vortance ond  hence Joes not spoil convergence,



Grene,m\ Moscimum li Eeli hood Pr'ob|eW\ 'f(.ﬂ) - S_z PC%\G.) J4

By deSinttion o3 9‘,% , O sotisFies N 3
N | €, C3g %o PCHI8 ]
E_ﬁ—},Z%PCIﬂl&)] - o
0 i
Orue

Taking. A~ —> 00 oand exchanging. depwvtive  and Su mmateon

N

— L L —f—&ﬁmpc,xnlm

Noe Nz

L= g mrenie)]

NN
ExCSn] = £im L T $CX)  obstratios X,

N-o»

Te. Sind +Hhe root oF o v*e,%reg;\(on Sunction



A Pf‘f Robbins — Monro pro cedure

) wv-)) 3 Ar-l)
6= 67 ~ 0y, Seww L Ao PLrul6™ V] Cat3)

Specific  exomple: sequentiol estimodion of the mean of

Groussion  distribution

. w) w) '
Ln this case & s the Mu. mean oF the Crousion

od X s gqiven by (2.136)

)

Y= _ 4 -
QNMLMPCII/AML'G.) X /AML)

P

< =



into

C2. 135)

with

Substitutin % (2.136)

-l:h we © L‘b“l (4]
SN

C2.124)




2.3.6 PBoyesian inferenee  for  He  Growssion
MLE webthed gove pont estimodes Sor M, ( section 2.3.¢)

Now &eve,loF o~ Bayes'\am treatbment 0

Single Guussion romdom varoble X Sq{,{;oge, > s kEnown
Awm o (nference /m gwven N/ observotions K =4 Xi,.. X, |

The likelithod Sunction s given by

N |
wa):l\;me) = Lno-‘)/l ex P'ﬂ ZLL. /“‘),‘

N3t

Mote +thet +ths Suncten s bhe Sorm o the QKPO"Q"":;“-, o
o quadratic Jorm  oF M.



We will cheose o prier  pom) given by Crausion  bewmuse
the product oF two exporentials oF quodrotle  Sunction 6oF
M will olso  be  Croussian

Teke prior prob.  pow b be

;S5 hyperparnmeters
PCM) = A (ML Mo, &3 ~ el

POS[S?J"O\“ 2
) N (M| Mo ,%0)
/

PMIX) G POKIM- P M)



= 2 X,
where, = > + N 65 /
i Nb‘o‘+o~;/uo N&r + = /P
Sy S, s
Remark

- /\AN 3 O~ C_OMPrOM'(Se, between /U\o ond /Vm,

— E5fet  oF c|r\ou\%e, in velue N



Precision s aitive, ¥ N> 67 O
— When N s Fintbe §F o3 = o, then the poterior

redaces to /V‘ML, ond VO {once S, becomes —

Cequential nference  In Poyesion Fouﬁad'(g,m

N -\
PCMIX) oC PCM) _ﬁ PCI,‘I,M)] PC X4 | M)
~—— N3\

E . ~—— —
° o oC posterior {Jistribution
o§ter oberving A=l o

=9 X, x/uk

meon



Q

Mow we wish +o infer the varionce ond assume meon ¢ Known.

let  the precision A= /o>, The likelihod Sunction of 7

N ) vy
Pk 1) = ']_I‘/vcx..\/ﬂ,z ) A~ expi- 3 a g‘ Cx- pm)" r
N0
: M =
e. the JSorm of N exp(-2)
h o ds o mma.  Jistr{ bution
e o & | o, b>0
Gom (P10, b) = I:c‘?) b” 2™ exp (—b2n) 2 >0

Hel‘e FCD‘) ‘lS A %Q,MMA 'funcmog\ [7(’0;) _ SVO o~ -=U du



Remark

— Y a>o gomma dJdistrbution has  Sunite witegr|

— X a2\ the Jdistrbution itself & Sinite.

-— aC a
Etﬂ] - — Vour C AJ = —
b b
2 2 2
a =1 a4 =4
b b= ] =D
0 : 0 : 0 '
0 A1 2 0 A1 2 0 A1 2

Figure 2.13 Plot of the gamma distribution Gam(\|a, b) defined by (2.146) for various values of the parameters
a and b.



COﬂ S‘te'ek +the PP}OP d‘(S’t CZ'M Cn l Qo, bo) . CRo, bo -

The Pos":er‘cor- Jist. o N S os below

PCL%x) € A expy - = g‘ an-/ﬂ)z]' © Gam (21 &, bo)

S~ =’ S -

likelitheod  Function ofF 2 prior o A

oo —~\ Ny A N Y
< A 7 Q—XP'S"‘boZ-E'E\CI" M)T

= pLALx) = Gam( Al Ay, by) where
O = ao*('—/)\_-/
( N 3 N 2
LN: b°+EIC1ﬂ'/‘4) = bo+;@Nb

hyperpovameter)

C2.l¢Qq)



Remark

— ESfed

F

—  InCreases

We n

‘eSSechive

- EC721x%x] = b =

Vor C2 1 %)

Sy
-_—

o\)gerv‘m%_ N dotm FO'mtS
the volue o o by 2’
“ b ‘9}’ %’, O\Mt
wherprebe.  the parometer Go  in  tRrwms
Pr'(or obserwntions
79y LA + NV
2b, t VS
v -
by EC7) ;I—._‘ 1

ML



Now Su ppose that +the both M ond A ore  unknewn

Considr the dependence ©of +the likelihood Suntion on M and 7

N by .
PLKAM D) = I\_\ (%E)/ QXP"“QQL‘—}A) I
N

o o[ 2)] e[ mb - 2E

n<y

Thus  the Frior Jdistrbution  chould ke +the Form

1 16
PM,2) LC [Wyz exp (—l,f-')] exp{ CapMm - d 2]

: C2.163)
3 /. ¢t
= exp - F -7 127 epi-(4-55) 7

M. DN 7




where ¢, 4 od [ ore constarts.  Ugse pem,n) = PLMLD) PLA)

piMmin) . o Craussion Wwhose Pr‘ec"sion is o |inear Sunction of

PCAY ;. a  Qomma distribution, Se we dake O~ Pr}gh

piM, ) = NCML M, C(>7))-‘) Grom (D |\ &, b) CUISE)

where poi= b a= UL b= 4=

/

(25%) s clled normal gomma  or  Crausion  gamma

Note thod t s not the S:MPl 7 the Pmduclr of' on i'\d%?ﬁﬂwkﬂt

Guussion  Prier oad  Gammo. prior.



Multivoriobe  Cmwussion NCX| M, A')  Sor  D-dim ¥
First,  when Pr‘ec‘(sion motrix, A s Enown  the conjugete prior
dictrilution & ogin oo Cuussion

pxD
$ecgng}r Sor known wmMean ond unknown Precflsion mobrix N\ ,

the c.on.iu%,ocbe prior dictrnbution s e Wishart distribution

gwen by broce  of  mobrix

el (w-p-1/2 ( /

W LA LW, ) = BIAL exF(--i-rrcwf‘m)

where VD s coled the number of deprees ofF  freedom



W s o DPxD sacle wmabrx. The nomalidation conctont £ s
%.}V?n by

=
-V [ o D)/t . v+ =4
Blwr, v)= lw/] (l e ﬂ P( >y )
x=\

IF  both the mean and predsien are unknewn, the coniugate

prior s ogiven by

PCML, AL Mo, p W1 )= MM\ Mo, CEAN) W AL W, V)

WWICM 73 known as the Normal — W( Qhai‘t or Crwssian - \NISLO.F'IT



2.3.7  Student's £ — Jistribution

Conjugobe  prier for dhe precsion F a Craussion 'S given
by o gomma dsbribution.
Consider U V\‘tvogr‘(oc'[:e G-¢7W\SS'(ag.r\ N CX | /V\ , z” ) with Gravmon Pn or

Cram (T | b)) Trtegrde out +he precision

PCXIM,&b) = (7 NOXIM, T Crom CTLab) 4T T50

o

o C-bT) CW" = <%

=5 “fm  [3) we{-seE-mfdc

-0~-'/2..

AN & b + Cx — M) [Pent a)
(=) 1 | e

(78

b
[7 ()

2



where we hove wode the duonge of variable 2= TCbt (41—"/"))’/'2]
Defie new porometers V=22 oanN A= %Y,

3 "’/z "X‘L

[7CV2 + 7a) ( 7 ) LH' mx\_)ﬂ)zJ

[’Cv/2) RV
known os fdent’s 4+ — distribution. N s cdlled precsion  ond

StCcX{tMm 2 V) =

P s caled the degree s freedom
When p =1, +t- dstribution reduces +to Hhe Gouch b dist
While wn  the limit VY —¥ oo +- Jdstribution bewmwmes

Q'QUS;M N Cx'l)AI Z—')



Remart
- t-dist. con be interpreted  Infinite mixbue o  Croussion

— Longer toil , robustress  property

0.5
0.4t
0.3}
0.2}
0.1}
||
5 10 s 0 5 10

Figure 2.16 lllustration of the robustness of Student’s t-distribution compared to a Gaussian. (a) Histogram
distribution of 30 data points drawn from a Gaussian distribution, together with the maximum likelihood fit ob-
tained from a t-distribution (red curve) and a Gaussian (green curve, largely hidden by the red curve). Because
the t-distribution contains the Gaussian as a special case it gives almost the same solution as the Gaussian.
(b) The same data set but with three additional outlying data points showing how the Gaussian (green curve) is
strongly distorted by the outliers, whereas the t-distribution (red curve) is relatively unaffected.



Multivariote Studernts + — dJisbrbution

ad -\
StCRIM, A, V) = So AL AN ) Com (217, Wa)dn

‘ — 95 —
_rBaea) AN T A o
- r(w2) wo)? v

where  pi= Lk = )T N Cof = p)

Remark

- ECx] = M g v >

-\
— v %] (v‘)-f) N F v>2
— modeC#] = m

\



2.3.8 Perioé“(c.' variobles

Consides on  angular Cpolar)  Coordinede 02 6< 2R and

the p o blem of Q,Vm\uad:?ma_ the wean & observations
D=46,,.. O]

Smple  awerage  (O1t " Ox)jy s strongly  coomiinate  dependent.

Set  angular observmtions as ponts on wunit cirde,

Let X5 be o — dim  vechbor with X = C cos 9’; ) Swn O )



Avernce.  the vectors {X%,|

instesd

to  give

Figure 2.17 lllustration of the representation of val-

ues 6, of a periodic variable as two-
dimensional vectors x,, living on the unit
circle. Also shown is the average x of
those vectors.

X4




Corgierr PO thi€  have peried 2% must  sodsSies

PCB®) 20
o

T po) 46 = |

J

PLOt2R) = pCo) |

WQ. a0 eas‘(lf obto-in o GI'QMSG‘(M - l‘(he, dzst\—‘( bu'bion .
(onsider o Groussian  over %= X, X,)  having mean w=CMA M)

ad owrionce mabrix ) = 00T so thet

('1' -)A|)l + ('I-:. _/\A;)l T Ll.lqg)

_ \
P %) = 2R 6 exF{ S o>



M”‘P M= CX(, X)) ond M into Polar coordinotes
( X = F (os6- X, = F sin&
Jo = cosfy M= T, Sin & Fied T, Oy

Substrbute  these  trmnsSormation  into  (2.103) wibh r=( condition

The egPonef\‘lT n 2. IN3)

\
=

G

2 2
‘ (reos® — e CLos@) + (rsm b — r,cinb) Y
cr=1)
S _‘_.‘ { 1+ R2 - 2h, os® Cos@, — 2r, Sin B Sin Bo |
20°

- -‘:?‘3. COSCG"‘G‘o) + const
)



DeSine ™M= "Ya  Then we obtaln the expreston For  bhe

distribution &  p(®) olong  unit circle

I oL O£ 2N

32X LoCm)

PO B, m) = exp{ m cos (& - B)

//

which  called von  Mises  distributlon, Here Gv  represeibs  the

meon ond m = n’/@: ts called conent rotion Parwe'bezq

T,m © Rerobh — order  Pesel  functlon oF the Fist  Find

T omyiz | Sn exp{ m cosef Jo
© SR Jo



Now consider the  maxmum |ikelihosd  Sor O od M

Observations D=4 &,.. Ox1 s given

N
,Qm PCP\OQ,M) = ;l:‘\_ P("G'nl 9’01“4) C’--lgl)

N
= - NLQR) =NLLTIw + ™ Z cos (6, — )

-
=1 |

Set  the denwtive w.rt O, equal 1o e gives

N
Z Sn(6,-&) = O

n<|

Thas, we  obtaia GML-; Lo { = &Lz
7 2 5 O



Swmilarly  moximiing €2.081) w.rt m. Set bhe deriwbive o

Y. 1Bl) wrt m. then we hawe

N ML
Alm) = 7\/‘_ S cos(Ba- 8 ) (2 18S)

n=\

wheve  we  used L,,("") = L, m ond hose  defined

Tilm)
T, M)

We con rewrite C2\8S) n +he form

| N ML ‘ N . . ML
Alnud) = | % g‘ c,o;G-,.) s @,  + (-/—\; > sm&n) stn &,

nz\



120 8000 60
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Io(m) A(m) 0.5
1000
0 0 ,
0 5 10 0 5 10
m m

Figure 2.20 Plot of the Bessel function Iy(m) defined by (2.180), together with the function A(m) defined by
(2.186).

240 300
270

Remork :  other techniques 1o construct penodic  varable

)

~  Histooram n Po\or coordi nates

_ whares oF von Mises dJistributions



2.3.9

L tmctontions

M ixture

Mixtuvres o5

G‘ws;'(o.ns

of o Crousion ( unimodel )

Figure 2.21 Plots of the ‘old faith-
ful’ data in which the blue curves
show contours of constant proba-
bility density. On the left is a
single Gaussian distribution which
has been fitted to the data us-
ing maximum likelihood. Note that
this distribution fails to capture the
two clumps in the data and indeed
places much of its probability mass
in the central region between the
clumps where the data are relatively
sparse. On the right the distribution
is given by a linear combination of
two Gaussians which has been fitted
to the data by maximum likelihood
using techniques discussed Chap-
ter 9, and which gives a better rep-
resentation of the data.

distFbution -

100 100
80
60
0 | ‘ 3 4 > 6 0 1

lineor  combinations

Of' baSEc_

d‘(ﬁ:ﬁ bu‘\io ns.



Mixture of GCaussiang Super position of K Grousions

K
PRy = 7;‘ Re W CK, | M, T.)

Coch X C % | Me, Zh) [ colled o compongnt 5 mucbure

The Paramebel' A ore called w\‘(x'mg, coeSficedts oand sotisSles
k
2 K=\ 0L Re £ |
e={ ,

Figure 2.22 Example of a Gaussian mixture distribution p(x)a
in one dimension showing three Gaussians
(each scaled by a coefficient) in blue and

their sum in red.




PLx)  Cown be rewrite n +the Form

K
PRy = 2 PR PLX (k)

=\

Re = Pek)  prior probability of picking +the S component

NCK( Mg, Ze) = PCLXkLE) probability oF %  conditined on K,



Consieer the Pos{:er{or PCLELXR) a.ka.  responsibilities

Fe) i= pPCkix) = PCK. %D _ pCk) PLR L E)

PR T, PCR) PLRIL)

Re NCK| Mg, Zg)

Ty R NLRI M, S)

[Se—ee]
L




Croussion mixtae s goemed by mi={ Al Me] MM MY

MA 2 T { Z\l-" ZF\

Orne woy o set Ehese ?mmewkers s o use MOY( MUM

likeltheod .

Momum  likelihood  solution  For the poremeters  no longer  hag

o closed - Sorm  owalytical  solution.

E x Eectodfton maximizotion ( chagter )



2. The exponential ‘Swv?\ly

Brood class oF  distRbutions  colled  4he  exponentials  Souwmi ly

Rondom vedor %, paameters ) (oled rnoturml  parometers )

/

Pk 1) 2= hew gcn) exp f\lTwcx)7 2.19 ¢)

Here wWCK) s some function of W ond 9um) con  be in-l:er?re-b&)

os the normalization (weSficiest. te.

a.0) S hexy exp{ M wem) 9% = | (2.198)



Reall

Com Po.rison

Fevrnoull distribution

T

PCX | ) = BernCXIM) = M-

= eXp{ X Qn p + L= LnCL-M)]

= (1-Mm) exPﬁp..\( lfﬂ)x?

wikth C2.194)

xX=o 1\



Solve  Sor g ko give

M =9oln):= logistic — sigmodd

T huQ, Pernoulli  Jistribution cn be rewrited in Lhe Form

PCX1N) = o=C-9) expl)x)

we hve wed 6C-1)= |- ocn),  Compurison with C2.19¢)

ux) = X
hexy = |
qu) = O°C-9)



Next consder +he multinemial  Jisbr bution

M L M
PCk | m) = T pe = exp { Z Xe La Me

=t Kk=!

where *=0CX,, ... IM)T ( one -~ het vechr )

The standard veFresen-l:a.‘bion C2%A) o thot

pekin) = expl A g)

whee M= 0. ny) with npo= LaMe e

U = %, hegy =1 gem) = |



M
Since 2 /"‘t: =1 . Pmmeb% Ne are not inthpenthﬁ'b_

L

M
(.e. Mm = | - Kz?_l)“\: - left M7l povameters

M={
0& Me £ h 2 Me £
=
So  the multinomial  Jistibution  becomes ,_gm;
M et V4
expl T xgﬂnﬂht = expd T e Mo + Xy L\/AMY
k= =
Lo (U= E‘ Me)




Now ichn‘\:'r}y

L‘( M ):qk

V- 2 M
and My = exp ;) So¥t mag
K = o .
I+ . exp(n;) normalized exponential

In this  representution  multinomial  Jist bution
-

M= - M
peg imy = (L X ex?c'h:)) exp LT %) % € IR
k= g

Wz N N )



ey = K= ( ) hex) =\,
L=\

F‘(nml\y ~ consider the univariote
l
X ) = = . ex -
P ‘ M ()—'R )2 P {
_ | ex
().1& &) P { B
Moo X
= = wix) =
K (—‘/w;) [x‘) i

/

-\
acn) = ( | + Z exet%))

iK={

Grousstan  distribution.

\
1o (_1_},\)"?

\ L M
— _— X -
5 62 *o st 262 /A ‘

Qn;/z aum) = (- 20,3 exp ( Wh)



2.¢ | M aximum like ¢ hoo(‘ oy suds ent statistice

Consider  the ex?enen'bio»l ‘fmi\y sF distributions over X

Perla) = hitry gumy expi A uw)} C2 1ay)

Tablng,  the qradiort of  both sie o
D a.01) S hex) QXF{ ' U!()}‘)Y Jx = | (1.19¢)

wrt N we haw

Va

V 3 [ higy expinf uewm | 4%

+ aum | hep expd NTUORY W dx =0



Using (2.145) then

_ VgL = 90y S heg) exp 9 l)jT(A(,#)t ucr)dx = ELCUOKY]

We therefore obtin +the result

— 7 2,30 = ECUWW]

Now considr d  samples ®neted by K =1 x%.. *Nt

Jor  which  Jikeli hood

N N
PCAIn) = ;II hucn))gw)'v exy{ s wwn)‘

n=t




Setting 4he gradiest & Do PCK1In) wirt N +o 2ero,

We get the Sollowing condition to be sotis§ied by Ny,

N
- V230 = & F ui,)

n={

Note that MLE depends on dhe dobx  only through 5 ui On)
clled  cuSficedt  stodictic o C2 (ay)

Do nb need 1o store the entire dobon

€.g. PBernwlli uwy=x . sum of  { Xaj

Goussion wen = O, XHT um oF  { Xl od 4 X4



2.62  Condugate preor
For o given preb. density  plxin), Seek oo prior  pLM)
thot S c,on:)ugm& +o +the likelihoed Function.

( the Pos‘ber\mr hos the sowe Junctional Sorm oas  Lle Pr'(or)

For  exponentinl 'S'bm‘d\/ C2.19%), 3 conjugate prior & )

P LR, V) = Sur, ) g’ expiv )

where 5'(7(,17) s & norwmolicbon ceefficiedt ond  FUM e
the <came Sunction n CLN\AY)



The  peosterior
Pem | W, x V)T pCYIM: pLtalzx,p)

N

o gU”)I)-\- GX?i ’)lT( § wcm,)-i-lJ?[)T

n=\



2..3  Noinformative  priors

Tatend £ hove as [itte wfluene on the Porl:eﬁor oS

Poss‘( ble
et rsiby  or  likeliheod s given by PCX|n)

Consider  non nJorvoctive Pr'i or P C2)
First, PP = (onstont

— IF the domnin oF 2 is unbounded, prier cwanst be

rrvalized .  Such  prior s called  (mproper

~ TronsSormation  behavior of Rnsity under o  nonlinear change
o5 varcobles



E)Caw\ ?\e l,

D en SH:Y of X tokes the form

Pt (pm) = Fx=M

M s knoun os location Pamme'[:ef‘. €9 WN(Lx M, )
Trorslation Invariance

Jhy v = /I\.'.: Xtc Hhen



Thus pxim) = PCRIN)  so  knsity s independet of  ongin

Prior distribation [shoull]l sofiSy thls  tronslation inwriante property

)

= Si A.B

B-cC B
CH)y I = dm = cm—-¢) d
PG WM SA_C P SM SA PEM =€ M
%o we  have PCp=-c) = Pm)
Exowple oY lo etion pommeteri mean s o Goussion

The condugote prior Sor M s agan Crausion piM LM 677)

od we obtoin roninformative prior by taking 6. —b oo



E)Ca.m fle, 2.

Dea SH:y o) p & tokes the Form

ptio) = = 5(&F) 6~>o0
G s krown os swle parometer 3. WNIxXIM, =D
Sca.‘.e invortance |
3 X = X:iz X Hhen

N\

PR1&) = L 5(X)



So  ths  tronsformotion correspords o o choange o swle,

Prier distrbubion  should sotisy thic sale  inwrione property

> 2 Bre B ( | J
= - -_—O —d
S pPCT) Jo 5 c pPCT) Jo SA pLEe) £ 3¢ A B
So we, kawe, F(O“) = P (cl; ; ) 'LC O«\ hence, FC:: ) oC al

Note Hot Lthis ¢  an improper  prier becouse & o< ¢

S~ — S
C') 30 -0 0 P (2"6‘) = P(_G") \_j__ o c,ons'l:an't
SEY= o Y= Lo L L



Convenient 1o think oF ‘>r:cor- Sor  swle porameter n terms of
the dens'(‘hy of the log o the porometer

Exowple s scle Pammeter"- Stondouy Jevietion o 6F & Guoussion

NLXIpM, et o€ 67 expd — (Xfs) |

where X:i= x-M

More conventent +Ho work n tems & the pre cLson

n= \/63— rather than o itlf = —J€
_L_ s

. \ — .| s !

o 0o o ) ]>7,(,'7\) P () \:;IOC /A



We hove seen the woniugate pror for A wes Gom (7] %o,by)

The  non informoctive. s obtoined as the spedol Case O&o=bo O



2.5 Non Po«o.me'br‘(c. Methods
APProodnes +o :Ens'd'», modeling

Pwme‘bﬁc. V¢ Non Pwe:br"(c ( Sew ossun?ﬁons)

Histogrom methed  Sor  density  estinodtion

Swgle oontimious  romdom varoble X, Partition X into
distinct  bns oF Wwidth 23 ond  dhen  count  the number
Ny ©oF obervotions & X Slling in bin A

AQ
—

i |
\ \

==
P

am—
e



We. obtin probobility  values S5or  each bin  given by

where AN & % oF +totol obserwtions. S0 oo molel for
the densily pcxty s plecewise constoit  over the width &5

of each bin, ond o¥ten the bins are chosen +o  howe

Figure 2.24 An illustration of the histogram approach 5

. to density estimation, in which a data set A =0.04 '
-k“Q’ Some, wi d -k‘,\ A~ = A of 50 data points is generated from the
, distribution shown by the green curve. 0

Histogram density estimates, based on 0 05 1
(2.241), with a common bin width A are ;5 .

shown for various values of A. A =0.08 '
0

0 0.5 1

A =025 '
0

0 0.5 1




Remark

- EBESSed of o cholce & with A Csmw&kin%, PO\rO\Me‘ber)

—  After COMP‘t‘mq— Ns‘lb%.mm, the doba. £ cn  be Q‘csc&réeﬂ.

— Usedul ool  for & quick visualizetion of  1-d or 2-d  Joinn

— Lmitetion o high dJdimensional dotb MD M bins in D—dim

/



2.S.1 kermel density estimodor
Estimate  unknown  probability density pe#)  in D -dim spoce.
Consider some  small  region R contrining % .

Then the probobility moss  associated  with bHhis R

P = {, Pwoix Ctrue  prob.)

Suppose  we  okserved N otk st Jrown  Frow  pum,

Since  each pout hos o probability P of  falling within R

N -k
B‘\nc_K\N,P) — (_Al:) Ph Cl—P) kK=o, .. N/



\!

= EC Y] P . var [ 0] = PCL=P/pN

for lanae, N

K =~ AP

If the regon R s sufficently cmall ok pugy s roughly

(,o(\S'(:om'b oVver R , -H\en

P~ powy Vv _/_E:Pw)

vV

where V. the wlume oF R,



Com \:‘m‘m%- these expressons = we obtoin  the éensi'L7 estirate
= — (2. 248)
pLs = —= 24
R oy
O -~

Remark i two cmbru&c:l'pry assumptions on R and K

We con exP(o it C2.24%6) in Two difSerent woys
—  kernel dens; by  estimator ( fix V)
— K rearesst neighbour  method C Fix k)



Korme| methed in detail (Six R ad V)

Take the region R +t be oo small kYPepc,uLe, centered on X

To wunt He number Kk o poibs Selling wibhin R, e

{ “ o
E(u) 1= .ﬁ \ (Uil £ > r=\__.D
0 otherwise

Kuw & on  example of kemel Function (e, bthe quantidy
KCCR—-%)/h) = | 0 K les in & cube of swe |k centerel

on X otherwse 0.



The +otol number of points  lywg in  the cube
N
- S K "_‘:é“‘) - 1
<=5 | #)
Su‘ost}‘bkq‘l:}ﬂca_ this expression  inbo  C2.246) |
- IS =
Pon—N nz‘ 3 K(T)

whee we have wsed V= [P (exawmple oF  kermnel denstty estimator)



We cwn obtrin & smoobler density moe| (Grussian kermel )

N 2
oy = L l exp | — V¥ %l (
P N nz.t\ oz W72 Pi 2h

Wh% '/\ V‘?.Fr*esen‘bs 'Hae. S‘lhmlar-c\ CI'QV‘(o.t‘co n o"‘.)." CZ‘NASE‘(M COm PO nent
ond P(ays the rle of o QMOUH\‘mg_ Para.me:l:eh
Caeneml!y . we oo choose any other Kemel Sunction Kourn)

sublect 4o
K(uy) >0

S\CC\AI) dui = |



Remark

— No cnmpu‘l:athn mvo| ves in +he

— Com Pu\;mﬁono\\ cost Grows [inear! Y

Figure 2.25

lllustration of the kernel density model
(2.250) applied to the same data set used
to demonstrate the histogram approach in
Figure 2.24. We see that h acts as a
smoothing parameter and that if it is set
too small (top panel), the result is a very
noisy density model, whereas if it is set
too large (bottom panel), then the bimodal
nature of the underlying distribution from
which the data is generated (shown by the
green curve) is washed out. The best den-
sity model is obtained for some intermedi-
ate value of A (middle panel).

'!:h:&nlng, Phuse

with  the dod  Size

h = 0.005
0 0.5 1
h = 0.07 '




2.5.2

K nearest  neighbours

For
dota. to §Find
Cons'der

to grow

S

The

Use (2.2¢6)

(ol

densi 'I;7

o theve

unti| s

Neorest — neica.hbgqr-

ectimod ion ,
o afproprio:be

centered

metheds

firx wlue oF kK ond the

use
value Sor V.

ollow the rosit us

X ond

on

conting K datr  powts . 1€ the rudiu

nol  Jekfrmined CFixed

value

estimotion

o K gqoverns

PCa) =

)

the degree of Smoo‘ihinod,.

Kk

_~ method  for
NV

with KAAN density



LAMN  method con be externded to clas(Fiwtion.

Awl\/ K MN to eoch clas SePawod:e\f ond +then moke uce
o) Bo.yers theorem

N . botal % of dubo et Ne © ¥ oF ponts in Ce

K

e. 2 Ne =N
K=t

New Fo‘m‘t % 5o ) Drow o sfhere cenbered on ¥
con‘l:v&n'mad_ precisely |K  powbs  irrespective  of  bheir clasg

Thes sfkere has +the volume V  om conbuns  Kp porits  Srom

the class (g,



&% | Ce) = Sk
P NelV

>

S'wibﬂyf the.  uncondibioned J-MSHV s given by

I
and class  prior PCle) = Nh//v

Combining these equations oand using  Bayes theorem

P(K‘QL‘) P(QF) _ kg
P LX) Tk

PCCe 1 %) =




To wminimize the probability of wmisclassifiowtion, ossgn % to
the clas howing the lorgest Fos":er‘(or prebobi ity Ky K

The Forl:‘(cu\ar cose  oF kK =1 s colled nearest — neighbour

o K=1 5 K=3 . K =31
.. .: ° ° .. .: ° ° .. .: ° o
$ geo o.c". 8 ° $ oo ..c" 8 ° $ geo o.o". 8 °
x7 " x7 : x7
1 e % ° 1 g ° = 1. °
° @ .. ° @ o. L 4 .
° '] & o ’. > .. >
‘: .o ® i ‘: .I ° ‘: .l e
3 = o :.; .: o ‘.’ .: °
0 ol 0 LS 0 i
0 1 w2 0 1 gp 2 0 1 D

Figure 2.28 Plot of 200 data points from the oil data set showing values of z¢ plotted against z7, where the
red, green, and blue points correspond to the ‘laminar’, ‘annular’, and ‘homogeneous’ classes, respectively. Also
shown are the classifications of the input space given by the K-nearest-neighbour algorithm for various values

of K.

What  hapren  iF K= N



Remark

— K contrels  the degree <5 smoo'l:l\ing_
- K/V N ond [Cepne,l dens‘\'bf M?;ELKX]S Nqui re the en‘t(re.

Jotax seb +o s-[x;r-ed



