



























Chapter2 Probability distributions

Introduction to useful probability distributions
see

continuous

Discuss key statistical concepts such as Bayesian inference

Density estimation find Pex independent and identically

iit assumption observations

unsupervised learning

parametric us nonparametric

Conjugate distributions prior and posterior






























2.1 Discrete random variables

I Bernoulli binomial beta Y distribution

Bernoulli distribution

R V ICE 1 O 14 parameter M denote the prob of x 의

PC x I I M M
Prob o µ 1

parameter

Bern IM M 1 M XE 30 14






























Remark

PC가 201 M p k l M 1 M t M 1

E x 0 PC가 1m l p 가스 11M M

Var 기 E I EC 가
2

M pi M 1 M

D Bernays
Assume I 가 기사 is drawn independently from some Bernoulli

Find a parameter µ p E1 in frequentist setting






























See likelihood function of m D d 가 In 4 i E d 0.14

P D IM Tip ln Im m 1 1 2.5

Estimate find a parameter M by maximizing 2.5

ln P D IM 玆 n ln M 1 n ln 1 M Y

ln pco 1m only depends on In Σ 2n Find a value for M

of
jai ln p O IM 0






























Mm k E h sample mean

where m of 가의

likelihood 를 최대화하는 M

The sample mean is an example of sufficient statistic

Eg Flip a coin 3 times observe

MML I






























Binomial distribution 이항분포

Let x o or 1 and N be trials

R v m E 0 1 Ny to be of 2C I

From 2.5
m 0 1 or N

binomial distribution α mm 1

m5mm0
m of 기 1 M the probability of 水 二 I






























To normalize prob dist calculate all of possible

of obtaining m e 1 Denote by

Bin m IN M 삼 mm 1 m
m

where h i cnn.im nm
m 0.1.2 N

We have
ECMJ 돓 m Bin m IN M

홇 m h MMC1 M NM평균 횟수






























Var M 햕 m E MI5 8in CM l N M Nm 1 m






























2.1.1 The beta distribution

Conjugate distribution

PCO IX and p o have the same distributions

P 이 is called a conjugate prior for P 10

likelino.to
Goal

가 어떤 분포를 따를 지 가정 parameter 0

posterior of o likelihood function prior of 0

05 o






























Recall the p D IM of Bernoulli distribution

likelihood
pco 1m 茁 m 1 mt n 10 14

P SCIM m cm

To see Bayesian approach we need to introduce PCM

beta distribution normalization constant
2.13

Beta M1 a b ii9쁨 n 1 Mr osm

where 가 fi u e du is the gamma function 1.414






























Remark

S Beta M I a b tu I

E CM I int Var In caiicab.tn Exercise

a b are called hyperparameters

The posterior dist of M has the form as

PCM I mol a b α mmt
at

cry
l tbt

where l N M M of set

posterior α PCO IM
M I ye

PCM
1191 1 mpt






























A of 7녀 水二 o
posterior 1 1
put me a b E했19in Pacino

2.18

a b parameters of prior

Mil result of observation

t posterior

In view of 2.18 and def of beta fist

a b can be interpreted as effective observations

of C 1 and 2 0

Sequential approach Bayesian view point


















가의 번

T
Bern 시행 횟수 1

IN NM

observation






























Let us predict the outcome of the next trial

pac 1 1 0 So peel MI Dit f PC58m
0ir.is m

EPCI111_U.DIT.PH_1D A AB IC

conditionally PCA I B CSindependent 一二 si exams pulse dM P A I C

S MP1100 M EEM ID

miis posterior

Mtl N






























PCx 의 1 D mine MITT l N M

a b are hyperparameters of prior

m l are from the result of experiment m of 2 1

Remark

mil to huge observations then ML Bayesian

a b to then variance to both prior and posterior






























2.2 Multinomial variables

Extend Bernoulli binomial beta distributions

Discrete variables that can take on one of K possible case

I of K scheme one hot encoding

orange apple grape
orange 1 0 0 1 0 0 T

apple 二 8 1 00 49 19T
grape 0 0 1 0 0 1 T
orange 1 0 0 1 0 05






























K dim vector x ex 2 kt as 0 0 1 0 0 05

돖 k 1 경우의 수 K

DC 3 0 1 4

Let Me be p k 1 Bernoulli

The distribution of y Categorical distribution

P X I M 彦

MET
where mi M Mk with mez o E Mk I






























Remark

can take k possible cases

돘 PCN IMI Mk I

E EX IMD P CX IMD X M MKT M






























Consider D of N independent observations N

Likelihood
PCD IM Mi 二 羔ME 二 苽mmk

where Mk 돔 Ink of observations skills
D 1 2 K K K

MK logMk
data
matrix Ink

guanine






























Maximize log likelihood ln p DIM for m with constraint

Σ Mk 1 Using Lagrange multiplier ant maximizing

Σ Mk ln Mk 7 9 Mk 1 2.31

constraint

Set the derivative of 2.31 wrt Me to zero

ME Mme M MAT
M






























Multinomial distribution mi e m met

Joint distribution of the quantities mi me conditioned

on MI and on of N total observations

Multcm.ms Mk1M1 N mmi.me Mcm
O EM K 의

where mmi.me mimii 羔 MK N

K 개 categorical 변수를 갖는 N 개 자료에서 각 k class 가

MK 씩 가질 확률 MI 가 주어졌을 때






























2.2.1 Dirichlet distribution multi dim version of beta

Consider the prior distributions for the parameters Iml

of multinomial distribution or categorical distribution

Recall Malt Mi Mk 1 M N a 惑Mdk

pcm la a 惑 me pal avoid
1

where OE Mc El E Mc 1 Here N x Aki is

the parameter
雇

Mal is confined to a simplex of dim K 1






























Dirichlet distribution

Dir m la nii ii Mit osm 1

where ᵗhe Gamma 547ᵗʰ
07'710

Σ

So the posterior distribution for the parameters I Mk4

prior
P MI I D X P D IM P MIN α 羔 MET MKT
posterior likelihood

一一
tn

Posterior dist again

fonowananets.TV

T Mi TIME






























pull D Dire mil at mi prior
一一 o r

Pcatiiii 蒸 marmont
observation

where mi i mi mk J

As binomial dist with beta prior we can interpret e

Xk of Dirichlet prior as an effective of a 1






























2.3 The Gaussian distribution a.k.a normal fist

Single real value x E IR

N 가 1 M82 口 幽 exp 1 IT 기 M2

where µ mean d variance






























O dim vector N E

IRON

XI MI Σ
2차 in exp I I A MTECX.MY

I XD OXD DX I

where M O dim mean vector Σ Oxo covariance matrix

I Σ l determinant of Σ






























Remark Why Gaussian is important

Fits many natural phenomena

Maximum entropy in continuous r v

Central limit theorem

Fix N int random samples of vector N H2 N are

drawn from a population with M Σ

R.VN n N홌 In N M Σ

sample

mean






























Let us see geometrical form of Gaussian

ㅿ A MIT Σ A M
NC AIM Σ

IX O OXO OX I

is called Mahalanobis distance from m to x

WL OCT assume Σ is symmetric and real

constant 인 등고선
의 모임

Consider the eigenvector equation of Σ

Σ uli Di Uli i 1 D

A 나






























Eigenvalues 刀 To are real and its eigenvectors can be

chosen to form an orthonormal set so that

Uli Uj Ii

where Ii is the i element of the identity matrix

By eigenvector decomposition I can be expressed as

value

E E Xi Uli Uli 0시 1 0

0 0 vector

and i 羔 羌 ci ui inverse






























8 MTE X M X MT uh UI MI

KO OXO DX IMahalanobis
distance

29 if C 인
T10 H 의 모임

where yi i ut MD inner product of uli MI

IX O O XI X

Yi new coordinate system defined by uli shifted and rotate

Let y Y YoT Then Y U X MI where

UT
U

ii
whose rows are ui
orthogonal matrix






























tn

Remark

If Di so i 의 D contour surface of Δ is ellipsoid

center MI axes oriented along uli and sailing factors

are given by






























W LOG assume all eigenvalues of I are strictly positive

otherwise the distribution cannot be normalized see ch 12

i.e I is assume to be positive definite

Y U K M

Now consider the Gaussian dist in yi coordinate system

Jacobian matrix J with 1.27
가 G

RMCTGCYDlgi.nl

Ji ji Uji

Uy tm
where Uji are element of UT






























SO
I J12 I UTR I UT I I U I I UT U I III 1

and hence 1 J1 l Also 121 can be written as

I Σ l i y owners

0Thus in the y coordinate system

PCD Pm I tetiJ 1 ii ii et ist
N Cy 10 dia gli 01
11 Py Yi

pay is the product of D independent univariate Gaussian






























In 1.49 1.51 we found univariate Gaussian dist

has
E Ex j M var ㄷ 02

O dim Oxo

Now we will interpret parameters m Σ

IEN
12T ike f exp t.EC MTECx

MDYxdx1

c2T1Ik 1eXP1 Et2ZYLZtMDdz

Where we have changed variables using z x M






























Note that the exponent is even So the term z

in the factor M1 will vanish

E CNJ M

EIR

Now consider the second order moments of multivariate

Gaussian In univariate case the second order moment

is given by ECJ In multivariate Gaussian there are

D2 second order moments given by E Cli g

EC 가 5 y 용






























E EX NI Listen f exp I IN MTECXMDYXNTJNOXIIXDZZT
cii kfeXPI.it EZ12t1무1272T tz

Z MI vanish by symmetry

Z TM Z Tmi ztt Intermentmmr
ᵗᵈ

transpose of

Recall y Texts rows of U are eigenvectors of Σ

z UT y uh Wo 의 si y us
OXO OX I






























cd.it expliziizi1zizitz

c幽 IT 羔 羔 mini exp f I 쁦 Y til dy

羔 Uli Uli Xi

we have used 1도 1 y xi and lie expYET No

e.g 0 2

15 exp i exp
一 逑 Yi its

will vanish when it






























Thus we obtain E X TI Mimi Σ oxo matrix

and covariance of x can be obtained by

COVE XJ E EX ECJ ECJ TJ
Ox D

Σ





















OXO
gym realRemark NCH IMI Σ

of parameters 025 quadratic

Σ diageo or Σ 02 I
deep dive

20 Otl into Gaussian

Unimodal single maximum






























2.3.1 Conditional Gaussian distributions






























2.3.1 Conditional Gaussian distributions

O dimensional vector with N 1 m Σ which is

partitioned into a Ab with Hae IRM N E ROM

參

一一 一一

corresponding partitions of mean vector covariance matrix
MXM MX D M

M 쓚 Σ_
Eaa Iab

Σ ba Σ bb
D MX M D MX D M

Note that Σ Σ implies Eaa Ebb are symmetric Iba Σas












Let A Σ Inverse of covariance matrix precision matrix
M XM

仁
oxo Aba Abb O MX O M

Note that Aaa Abb are symmetric Apa Aib

Aaa Σai exercise

Find conditional distribution peal b Fix Yb

Consider the quadratic form in the exponent



N fixedMITE C M 10 00 0th
a Yb

늘 Ha mat Aaa Ha Mla 실 Ya matAab Xb Mb
2.70

늘 Xb MbtAba Ka Ma 늘 Ab MbtAbb Xb Mlb

First p Xal Xb will be M dim Gaussian because density

function is a quadratic form of exponent

Now we are going to find its mean vector and covariance

by completeting the square
M on 8

mm 88 品
IX O OXO OX I



Eg in case peas α exp ax't be c 가는 gaussian

pen α exp a fact be t.it it CY
α exp h acct is y

PC N C 1 M 02 M ta 02 ta
since N CK IM 02 α exp 1 622 22 2M It M Y

α exp 1 its other y

a s b e n ii i



Likewise the exponent in 0 dim Gaussian can be written

f K mi E x M IO E txTEMt constant

In view of 2.70 seed in Aa

ii Aaa Ha

So we obtain covariance of petal Kb is given by

Iab Acid Eaa
Malls



Now consider all of the terms in 2.70 that are linear

in a

Hat I Aaa M a Aab Xb Mb Y

where we have used Aba Nab

Since Σ Ma b Aaama Aab X b M b

Mad

Mal b Σ
aib AaaMa Aab X b Mlb y

Ma Aa Nap N M b



Malb Ma Ad Aab Xb Mlb Σ aib Aaa

Let us find Aaa and Aab

ㅢ
AaaRecall

x E1
Σ a Iab

f na

b
1

1
1
Eba Σ bb Abb

Use the following identification for the inverse of a partitioned

M M B Dmatrix
Ac 8 1_play of ocm pol

where M A 8 D C



So we have

Aaa Eaa Ears Eri Ebai
Nba Eaa Iab E bi Ibaf Ears hi

and hence

Mal b Ma t Iab Iti Kb Mb Kb fix

E al b Eaa Iab Eis Iba
Remark

Malls is a linear function of xb

S.am Is independent of Xb



2.3.2 Marginal Gaussian distributions

Consider the following marginal distribution Nex 1m Σ

M

P Na S pl Na N d b A 參 om

Ab 로 주변화하고 남은 Na는 어떤 분포인지

Strategy focus on quadratic form of exponent and identify

the mean vector and covariance matrix of pea

Recall 2.70 도 A
hb

늘 X MIT Σ X MI

Ya mat Aaa Na Mla 실 Ya matAab Xb Mb

늘 Xb MbtAba Ka Ma 늘 Ab MbtAbb Xb Mlb



In order to integrate out Kb pick out those terms

involving 씸

ㅎ Kill bb Xb t Kj MI 하심 Abi mi Abb 加 一 Ari m
2.84

j mini m square expression

where
mi AbbMb 一 八 ㅯ a

一

µ 이

ㅡ 一

H의 Of 씸

For peta 1 P Aa Kb JIM

2.86 f exp 1 하심 ADMITAbb 加 一 Ai MI Y ㅄb



which is an inverse of the normalization coefficient

As seen before this coefficient is independent of mean

Combining the last term E miabb mi in 2.84 with remaining

terms in 2.70 depending on Ha we obtain

mi Abb mi 늘 Ni Naa Yat Xi Aaa ma NabMb t constant

늘 AbbMb Aba Xa mai Ab AbbMb Aba Xa Mla

Nat Aaa ma Aab Mb t constant

늘Hat Aaa Aab Ab Aba Yat Xi Aaa AabAb Aba Mia
constant



Recall the exponent in 0 dim Gaussian can be written

j _mi E x M E E EM t constant

Denote the covariance of paa by Ea and Ea is

given by
si 싨 a

一

ab 삼5爲
Similarly mean vector is given by

Ea i 幾 Ma Ma



To simplify at Aaa Aab Mill bat

recall Aaa hab Eaa Iab
Nba 八 bb Eba Ebb

and use 2.76 expression of the inverse of a partitioned

matrix
EE Aaa hab Mi Abat Eaa

Thus we have Ead 二 竺 cov N E
스
tDB 가

where Pea 5 P Ka b d b



N X 1M Σ with Ai Σ D dim

參 m 쓞 Σ
Eaa Iab
Eba Ebb 쇘쐈

Conditioned distribution

pex al Xb N Mal Malb Aaa

Mal b Mla had Aab Xb Mlb

Marginal distribution

p Xa N Na I Ma Σ a





2.3.3 Bayes theorem for Gaussian variables

Linear Gaussian motel example

Gaussian marginal dist pex Gaussian conditional dist pay ix

PCYI x has a mean as a linear function of and

a covariance which is independent of

i.e P X N X 1 M N NE M tim

YE O tim

P Y1 N Y I A X b L

where MI A and Ib are parameters governing the means

and A and L are precision matrices



We will find pay and p X1 Y pey
marginal conditional known

pey y

Let
z and us consider the joint prob dist

P Z P Y IX P X

ln p z ln P y ln P Y 1 X 2.102

A MTA A MD indep of N.Y

늘 Y AX BTL Y Ax b const

X Y
This is a quadratic function of the component of Z

hence Plz is a Gaussian



1

Consider the second term in 2.102

AT At ATL A X 늘YT LY 늘 YTL AN 늘XTAT LY

T
At AT LA

LA
A산 늘 ZT R z

Z has precision inverse of covariance matrix given by

At AT LA
卍 一 LA

1만

COVE ZJ R 1
M M AT
AN L t A A AT

2.105



Consider the linear term in 2.102

씨 N에 必 心 L b t YTL b 剡
下 AM ATL 1b

Lb

E 玎 R AM ATL 1b
Lb

m
t 2 108

AM b Y
A tb

Using section 2.3.2 and p Y 1 P E

tx.EEJ

AMt1bC0vCYJ
L t A 心心



Now we can find an expression for pc x ly

EC lY 11 t AT L AT S AT L Y b t Am I

Cov K l Y 八十 AT LA





2.3.4 Maximum likelihood for the Gaussian

Data set NT I Anl iit samples of 0 dimensional

Gaussian The log likelihood function is given by

en PC X Im Σ NXO matrix

을 ln 2 a 날en l Σ 1 홌 M MIT I n MI

Note that likelihood function depends only on the following two
OXO

quantities
N N

Σ An Σ An AT
7 1 7의



These are known as sufficient statistics for Gaussian

In ln P X 1M Σ Σ nm o dim vector

Set this gradient to zero
vector.netobtain

MML 光 毖 n
solution of maximum

likelihood estimator

sample mean M LE

Em 六 烝 An Mm An Mm T

sample covariance



Remark

Σ me involves MML

Mine is independent of Σ ML

Evaluate the expectations of thes solutions under the true

distribution Then we obtain

EEMun MI unbiased estimate

EE Σ me Σ biased



2.3.5 Sequential estimation

Sequential estimation for maximum likelihood

This method allows data points to be proceed one at time

and then discarded and are important for on line applications

Consider

MML 六 絃

which we will denote by Mid based on N observations



N

Mm 玆 n

六 爪 六玆 n

N n E in

Mii t LAN
다841t98t



General formulation of sequential learning Robbins Monro

Two rv Z O governed by a joint distribution plz a

Define deterministic function fco by
e.g

f co EEZ 10 z p z i o d z E Ct 1

cotitional expectation

which is a function of O called regression function

Find the root t at which 5C 0

Suppose we can observe values of z one at a time



Assume the conditional variance of z is finite
fco

EEZ 5 101 c t 6
Ot solution ox on

and wl og f a so for ost and f ca co for or at

A sequence of successive estimates of the root t given by

o o _any z o 2.129

Where Z o is an observed value of z when 0 0



I any represents a seq of positive numbers satisfying

his AN
0

an o e.g

옶 aic o

05 5 10

By Robbins Monro 2.129 converges to the root with

probability one

Remark

Third condition ensures that the accumulated noise has

finite variance and hence does not spoil convergence



I

General Maximum likelihood problem fco Szp ezio tz

By definition of Omc One satisfies
E jot ln pal a

읇 w̅놌 en plan lo le o

Taking Nt o and exchanging derivative and summation

big 玆 응o lnp la la E john pala

ExCf 가 gig 煞 f n observations

Ie find the root of a regression function



Apply Robbins Monro procedure

of G
사

_am at ln PCRN10
대 2.135

Specific example sequential estimation of the mean of

Gaussian distribution

In this case 에 is the Mi mean of the Gaussian

and z is given by 2.136

z Pi ln p X1 Man G E X Min



Substituting 2 136 into 2.135 with AN 있다

then we obtain 2.126



2.3.6 Bayesian inference for the Gaussian

MLE method gave point estimates for M Σ section 2.3.4

Now develop a Bayesian treatment

Single Gaussian random variable 가 Suppose o2 is known

Aim to inference M given N observations N 2 개 NY

The likelihood function is given by

PC씨 Tip on Im piety apt is E n my

Note that this function is the form of the exponential of

a quadratic form of M



1 M

We will choose a prior pim given by Gaussian because

the product of two exponentials of quadratic function of

M will also be Gaussian

Take prior prob pm to be

Mo 8 hyperparameters
PCM N MI Mo 002

Posterior
N MIMo 02

PCM IX P X1M PCM



Exercise 2.38 we obtain
posterior parameters

PCM IX N MI MN ON 六 2 개

where M Nitrate Not Nisi Mm

i ㅎ

Remark

Mn is a compromise between Mo and Mmr

Effect of change in value N



Precision is additive if N to 아 to

When N is finite if

ftp.thenthepoteriormeanrehc.esto Muc and variance of becomes it

Sequential inference in Bayesian paradigm

P MIN d P 에 T pan내기 PC 자 1M

posterior
a posterior distribution
after observing art data

水二 가 it



No we wish to infer the variance and assume mean is known

Let the precision 7 62 The likelihood function of

PCX17 齊 N la 1M 7 α 7
2

exp 끌 玆 C MRY

O

ie the form of 7ᵗʰ exp 一

The corresponds to gamma distribution
a b 70

Gam 71 a b ta b 7 exp b 7 770
1

Here ca is a gamma function rca 18 uat e du



Remark

If aso gamma distribution has finite integral

It all the distribution itself is finite

E D E Var C D i



Consider the prior fist Gam T l ao bo Cao bo hyperparameter

The posterior fist of X is as below

쏐옶샹 瑟器
ae.in

Ttx
a YO in exp _box_ 핬 Xn M5 Y 2.149

PCI 1X Gam 71 AN bar where

AN aot E

bN b.tt 핬 Xn M2 b t at



Remark

Effect of observing N data points

increases the value of a by

a b by Tai
We can interpreter the parameter do in terms of sao

effective prior observations

氏 切 IN i iiiii_re.rs I
var 기 刈 二 i E 0 홌



Now suppose that the both µ and 刀 are unknown

Consider the dependence of the likelihood function on µ and 7

pct IM 九 烋 這兆 exp E Xn M21

재 alt exp 깔기 explainEm i 焦竹
Thus the prior distribution should take the form

pan a 갸 exp TT explain d개

eihl
tap 筵

2'53



where c d and p are constants Use pema p M7 pal

PCM刀 a Gaussian whose precision is a linear function of a

pa a gamma distribution So we take a prior

P M X N M l Mo p 刀八 Gam 71 a b 2.154

where Mo 4ps a H8 b d p

2.154 is called normal gamma or Gaussian gamma

Note that it is not the simply the product of an independent

Gaussian prior and gamma prior



Multivariate Gaussian N X 1 M A for D dim

First when precision matrix A is known the conjugate prior

distribution is again a Gaussian
OxD

Second for known mean and unknown precision matrix

the conjugate prior distribution is the Wishart distribution

given by trace of matrix
OXO r

W AI W U BIN
0 12

exp Trc win

where is called the number of degrees of freedom



내 is a 0 0 scale matrix The romanization constant 8 is

given by

8 W1 v 1 mi 20012 T
여 4 惑 p

U等 Y

If both the mean and precision are unknown the conjugate

prior is given by

p M A l Mo P W1 v N M l Mo p N W A1 W1 W

which is known as the normal Wishart or Gaussian Wishart



2.3.7 Student's t distribution

Conjugate prior for the precision of a Gaussian is given

by a gamma distribution

Consider univariate Gaussian Nce I M 다 with Gamma prior

Gam 21 a b Integrate out the precision

PCI IM a b 18 N CC IM T Gam ㄷ I a b dz ㄷ o

18 92'0 5 exp Ecsc my te

i 늞 b tail scat's



where we have made the change of variable z C b t x M

Define new parameters v 2 a and 7 ab

St 21 M D V P18g 1곯711tna102
known as Student's t distribution 7 is called precision and

V is called the degree of freedom

When v I t distribution reduces to the Cauchy dist

While in the limit v t o t distribution becomes

Gaussian N SLIM 7



Remark

t dist can be interpreted infinite mixture of Gaussian

Longer tail robustness property



Multivariate Student's t distribution

St X 1M1 A U 8 NCX1 M 775 Gam 7 1 92 Y2 57

08의 it 70ᵗʰ
where

Δ i A MTA A MD

Remark

EC XJ M if US I

COV C 8.272 N it V72

mode y M



M
2.3.8 Periodic variables

Consider an angular polar coordinate o or 2ㅈ and

the problem of evaluating the mean of observations

0 30 ANY

Simple average dit On N is strongly coordinate dependent

Set angular observations as points on unit circle

Let Xi be two dim vector with Xi cos Oi sindi



Average the vectors Any instead to give

女 二 元 誣
F cost sin E

i.e T cos E 六 E 0SOn F sin E 六 E Sin On

Thus we can solve for E to give

E tail i 邀



Consider plo that have period 2기 and must satisfies

PC에 20 00 R

f Po do 1 01.1.1
Oo

P Ot 2자 p o

We can easily obtain a Gaussian like distribution

Consider a Gaussian over l 2 having mean m M1 M2

and covariance matrix Σ 02I so that

Ph iast exp 1 041.51T y
1.2.1731



Map X 기 2 and MI into polar coordinates

r cost h r sino

Mi ro cos do M2 ro sin to fixed ro do

Substitute these transformation into 2.173 with r 1 condition

The exponent in 2.173

she l rcoso rocoso.tt rsino r.si noory
r 1

is l it rs 2rocosocosoo 2r.si no sin of

cos 0 00 const



Define me 1 2 Then we obtain the expression for the

distribution of pco along unit circle

O O스 ㅩ
PCO 100 M It is exp I M COS 0 00 Y

which called von Mises distribution Here do represents the

mean and m o2 is called concentration parameter

I om zeroth order Bessel function of the first kind

I.cm it 8 exph m cosoy do



Now consider the maximum likelihood for do and m

Observations D 3 G OnY is given

ln p D1 00 m PCOn I do m
2.181

N ln 2 ㅈ N ln I.cm t m았 cos On 0

Set the derivative writ to equal to zero gives

玆 sin On o 0

Σ SinonThus we obtain of tailgating



Similarly maximizing 2.181 w.int m Set the derivative of

2.181 w.r.tn then we have

A m 羔 Cos 0n 8
세

2.185

where we used Tim I C에 and have defined

ACM i 좋씀

We can rewrite 2.185 in the form

A Min 亢 羔 0SOn eat t 亢 羔 sinOn sin at



Here Acm can be inverted unmadeally

Remark other techniques to construct periodic variable

Histogram in polar coordinates

Mixtures of von Mises distributions



2.3.9 Mixtures of Gaussian s

Limitations of a Gaussian unimodal

Mixture distribution linear combinations of basic distributions



Mixture of Gaussians superposition of K Gaussian

K

PCH E 자 N X I MK Σ e

Each NC I Mk Σ e is called a component of mixture

The parameter e are called mixing coefficients and satisfies

K
Σ 전의 O 스자스 1
K의



PC씨 can be rewrite in the form

K

PCH 돉 PCK PCX K

자 pek prior probability of picking the Kth component

N X1 Mk E p X1 K probability of x conditioned on K



Consider the posterior pc KIX a.k.a responsibilities

ka p K1 씨 器今 믄띧炅器 u

졂삶씬籤



Gaussian mixture is governed by a 지 They M M Mal

and sit a Ek l

One way to set these parameters is to use maximum

likelihood

h p X 1 TI M I E ln l 전 N Xn1 Mk E

Maximum likelihood solution for the parameters no longer has

a closed form analytical solution

Expectation maximization chapter 9



2.4 The exponential family

Broad class of distributions called the exponentials family

Random vector X parameters 에 called natural parameters

P X I 71 h G 71 exp 7F네 X 1 2.194

Here 내내 is some function of x and genn can be interpreter

as the normalization coefficient i.e

g 71 f ha exp 서네 H l dX 1 2.195



Recall Bernoulli distribution

PC가 1 µ Bern X1 M pi 1 M
가

x 0 1

EX미 가 ln µ t l N ln l N Y

1 m exp ln fµ一 가 I

Comparison with 2.194

7 ln MT



Solve for µ to give

µ 이에 ted logistic sigmoid

Thus Bernoulli distribution can be reunited in the form

PC기 17 057 exp 7 기

we have used FE7 1 0 7 Comparison with 2.194

U X X

h 기 1

gun 057



Next consider the multinomial distribution

PCX IM 崧 mi exp I 玆 lnMal

where l ImT one hot vector

The standard representation 2.149 so that

PCH 171 exp 7T x

where 71 7 7Mt with 7 k ln Mk i.e

UI X X h A 1 g 71 1



Since E Mk 의 parameters no are not independent

i.e Mm 1 Mk left M 1 parameters

0스 MK 스 1 쐤 Me 스 I

So the multinomial distribution becomes

1
蟲水

exp le laMay exp de laMe t n ent
en I 一羔Mk

M 1

exp Σ men lii ten 1 m Y
KEI



Now identify

en lies 7K

at
Me iii

ot max

normalized exponential

In this representation multinomial distribution

PCX 71 1 t Σ exp 7k exp 7 ix N E Rm
KI

7 7 7M IT



UI H X ii ha 1 g 71 1 t 愍 exp 7

Finally consider the univariate Gaussian distribution

PCI M 62 yiskt AP 1 262 l MRY

is et.in r my

7 1
e

UIC 김 h al 2x5 g 71 272kexp 器



2.4.1 Maximum likelihood and sufficient statistics

Consider the exponential family of distributions over x

P X1 71 h k g 71 exp 7T U y Y 2.19

Taking the gradient of both site of

g 71 f h x exp ni u y Y d x 1 2.195

wir t 71 we have

g 71 f h x exp 7T UIC Y dN

g 77 h x expd ni ul x y UI y dN 0



Using 2.195 then

gli 7g 71 GC에 f ha exp 17T 에CA Y Ula tx E 대1

We therefore obtain the result

T In G에 E 대 水

Now consider it samples denoted by X 1 ANY

for which likelihood

P X17 惑 han gui exp l ni f man I



Setting the gradient of ln P X17 writ 71 to zero

We get the following condition to be satisfied by 71mL

7 lng 71ML 亢惑 Ulan

Note that MLE depends on the data only through Gulen

called sufficient statistic of 2.194

Do not need to store the entire data

E.g Bernoulli via x sum of 가에

Gaussian 네 x 기 if sum of 가에 and 구 351



2.4.2 Conjugate prior

For a given prob density pex in seek a prior p 71

that is conjugate to the likelihood function

the posterior has the same functional form as the prior

For exponential family 2.194 conjugate prior of 71

P 711 X U f X v gen exp du nix y

where 5 X v is a normalization coefficient and guns is

the same function in 2.194



The posterior

P 71 1 X X U d P X 1 71 p 71 1 X U

a gcnY exp l ni 羔 내 식 t UX Y



2.4.3 No informative priors

Intend to have as litter influence on the posterior as

possible

Let density or likelihood is given by pal 刀

Consider non informative prior pox

First pa constant

If the domain of X is unbounded prior cannot be

normalized Such prior is called improper

Transformation behavior of density under a nonlinear change

of variables



Example l

Density of x takes the form

P K M f x M

M is known as location parameter E.g N X1 M 82

Translation invariance

If 가 I xtc then

PCI 1 f f I A

where we have defined I µ to



Thus palm PCI IT so density is independent of origin

Prior distribution should satisfy this translation invariance property

of PCM M if pcm tu f PCM c 해 ㅂ
A.io

So we have per c p M

Example of location parameter i mean of a Gaussian

The conjugate prior for µ is again Gaussian put It E

and we obtain non informative prior by taking Eet o



Example 2

Density of x takes the form

PC가 18 ㅎ51중 o o

G is known as scale parameter E.g N X1 M 82

Scale invariance

If 가 I C 가 then

PCI 18 ㅎ 5 츻

where we have defined 8 co



So this transformation corresponds to a change of scale

Prior distribution should satisfy this scale invariance property

i PC이 do 二 佇 pc 이 do f p 는이는 to ㅂ
A.to

So we have pco p E 이는 and hence PC이 a ㅎ

Note that this is an improper prior because of 0 0 0

o e s

b b o o Re
I뿧 lift constant

So ln ds ㅎ to



Convenient to think of prior for scale parameter in terms of

the density of the log of the parameter

Example of scale parameter standard deviation o of a Gaussian

NC 가 1M 이 a E exp t.CI o5I

where I i x M

More convenient to work in terms of the precision

刀 二 Yo rather than o itself deeds
乃 二 衣 f ㅎ

6 ㅎ a 막기 P1이 tl a 뉴



We have seen the conjugate prior for 刀 was Gama lao bo

The non informative is obtained as the special case at bo 0



2.5 Nonparametric Methods

Approaches to density modeling

Parametric vs Nonparametric few assumptions

Histogram method for density estimation

Single continuous random variable x Partition 가 into

distinct bins of width ㅿi and then count the number

ni of observations of 가 falling in bin i

ihl 1 1 1 1



We obtain probability values for each bin given by

Pi it

where N is of total observations So a model for

the density pas is piecewise constant over the width tri

of each bin and often the bins are chosen to have

the same width ㅿi



Remark

Effect of a choice of width smoothing parameter

After empting histogram the data set can be discarded

Useful tool for a quick visualization of 1 t or 2nd data

Limitation of high dimensional data MY M bins in 0 dim



2.5.1 kernel density estimator

Estimate unknown probability density pas in 0 5cm space

Consider some small region R containing X

Then the probability mass associated with this R

P k PCH tx true prob

Suppose we observed N data set drawn from pas

Since each point has a probability P of falling within R

Bin K l N P 삼 PK 1 PT 1 0,1 N



E KIN P var
1 PC1 PIN

For large N

K N P

If the region R is sufficiently small that pa is roughly

constant over R then

P P씨 V 쬰吻

where V is the volume of R



Combining these expressions we obtain the density estimate

PCA N4 2.246

R 영역

Remark two contradictory assumptions on R and K

We can exploit 2.246 in two different ways

Kernel density estimator fix V

K nearest neighbour method fix k



Kernel method in detail fix R and V

Take the region R to be a small hypercube centered on

To count the number K of points falling within R define

k ul 1
1 Uil 늘 i l D

otherwise

Keun is an example of kernel function.ie the quantity

K An h 1 if An lies in a cube of site h centere

on x otherwise O

t龜



The total number of points lying in the cube

k 二 羔 k 幽川 任彗入
Substituting this expression into 2.246

Pa 文 羔言 K t

where we have used V M example of kernel density estimator



We can obtain a smoother density model Gaussian kernel

마씨 文羔 dies 1 쌀쎽

where h represents the standard deviation of Gaussian component

and plays the role of a smoothing parameter

Generally we can choose any other kernel function Ka

subject to

Kill 20

f K UI JUI 1



Remark

No computation involved in the training phase

Computational cost grows linearly with the data size



2.5.2 Nearest neighbour methods

K nearest neighbours

For local density estimation fix value of K and use the

data to find an appropriate value for V

Consider a sphere centered on x and allow the radius

to grow until it contains K data points i.e the radius

is not determined fixed

The value of K governs the degree of smoothing

Use 2.246
마씨 nice with KNN method for density

estimation



KNN method can be extended to classification

Apply KNN to each class separately and then make use

of Baye's theorem

N total of data set Nk of points in Ck

i.e Ne N

New point fixed Draw a sphere centered on

containing precisely K points irrespective of their class

This sphere has the volume V and contains Kk points from

the class Ck



P CHICK NISTro

Similarly the unconditioned density is given by

PCX TEL

and class prior P Ck NK1N

Combining these equations and using Baye's theorem

Peal x PY.it i
64.0



To minimize the probability of misclassification assign x to

the class having the largest posterior probability Kk
The particular case of k 1 is called nearest neighbour

What happen if K N



Remark

K controls the degree of smoothing

KNN and Kennel density methods require the entire

data set to stored


