
Chapter3 Linear Motels for Regression

Regression supervised learning

O dimensional input vector

t continuous target variable

Linear regression motel linear combination of non linear

basis functions of the input variables with adjustable
I

parameters E g of basis function at 챇
Y l W Wo t w l W222 t W3 3

whose basis is 1 1 0 3C 4



N observations h n y n 1 2 N corresponding target tn

Goal predict the value of t for a new

Simplest approach constructing appropriate function y x

General or probabilistic perspective modeling the predictive

distribution pet ix uncertainty about t for each x



3.1 Linear Basis Function Motels

Linear combinations of fixed nonlinear functions of input y

Y N W Wo t W 0 x

where x are known as basis functions Wo allows for

any fixed offset called bias

So it is convenient to define an additional dummy

basis function y 1 so that D dim M dim
TO ICY

Y X W 52 W 0 A WTICX



where w Wo Wnt and IN 110 0.4t 0m IT

In view of pre processing or feature extraction the

feature can be expressed as I CHI

Basis functions

In Chapter 1 there is a single input 기 and the basis

functions take the form of powers of 기 cm d

One limitation of polynomial basis global functions



Gaussian basis functions

x exp _CITY

where µ govern the locations of the basis functions in

input space and S governs their spatial scale

Sigmoidal basis functions

X 8 기후

where E is the logistic sigmoid
이에 HIT



Equivalently we can use the tan h function Since

tanh a 2012A 1 general linear combination of sigmoid

is equivalent to a general linear combination of tan h

Most of the discussion in this chapter is independent of

the particular choice of basis



3.1.1 Maximum likelihood and least squares

We have showed SSE could be motivated as the maxima

likelihood solution under an assumed Gaussian noise motel

As before we assume that target t is given by

a deterministic function ya m with additive Gaussian noise

t y X m t E

where E is a zero mean Gaussian random variable with

precision f inverse of variance



I.ec
pctlx.mn N t 1 YEN W1 B 3.8

In section 1.5.5 we showed that

Et Ctl 刈 二 ftp.tl dt 3.9

is the optimal prediction



Consider inputs 水 二 似 xie with corresponding target

t tar Let t ti tai Assume X and tl are

drawn independently from 3.8 Then the likelihood fun cto

of 내 and P is in the form
ya W11

p 41 X m f 惑 N tn l Wi ㅧn pi 3.10

We will drop the explicit X from expressions

ln pet 1 M B E ln N tn l wi Ian pi
3.11

E ln B E ln 2조 p ED W1



where SSE is defined by

Eo W Itn wi I n R 3.12

실제 예측

Consider first the maximization of 3.11 wr.tw

Maximization of likelihood function under a conditional Gauss ia

3.10 for a linear model Minimizing Eo w

Ow ln pet Iw β β 봈 3 tn wi I n y I n



Setting this gradient to zero gives

O 솠 tn I n In I CNT W

Solving for w we obtain In lMXN NX1

WML IT I It O M

MXN N XM

which are known as normal equations for least square problem

Here I is an N XM matrix called design matrix whose

elements are given by In



M
I.e

A 0 C씨 Icai

i

있

I 1
씨 이씨 아내 씨

fyii
N 씨 있 신 I CANT

where I ㅧ 0 세 刈下

The quantity

It IT If IT

is known as the Moor Penrose pseudo inverse of I



If I is square and invertible then I I



Let us see the role of bias parameter wo
Wo

Ep CW 絃 ttn wo 9wsgcx.nl SE

Set IT o and solving for wo Then we obtain

Wo E_Mtw̅ so

where we have defined
E Σ tn 六 Σ cn



Thus wo is the difference between the averages of tn and

the weighted sum of the averages of basis function values

After finding wmc we can maximize log likelihood 3.11

want noise precision parameter β

I Itn wwi can Yi 홦 iii

一
t



3.1.2 Geometry of Least squares
N dim

M 개

꿊

N dimensional space whose axes are given by tn

For fixed j basis function values n N data points

can be represented as a vector in the same space

N dim



Denote 9 by this vector given by

4 84 CH2 CANT j th colum of I

where j 0 1 M 1 N 차원 M 개의 vector

Let M N and S be the M tim subspace spanned by

Define Y Y M W Y H2 W1 YEN WAT Because Y

fiwjt0ca y wo lot wil t Wm ln

is an arbitrary linear combination of 9 Y live anywhere

in the M dimensional subspace S y 의 모든 component는

동일한 Wo Wm 을 공유



SSE 3.12 is equal up to a factor to 11 Y t 112

squared Euclidean distance

Thus the least square solution w corresponds to that

choice of Y lying in subspace S and that is closest to t



3.1.3 Sequential learning

Aka on line algorithm

Applying the technique of stochastic gradient descent also

Known as sequential gradient descent

If the error function E En En then after presentation

of pattern n SGD updates w using

yet wi 7 TED

where C iteration number 7 learning rate parameter



For the case of SSE 3.12 En tn wi In
실제

wet wi 71t
봄in In

where In i I n cn An An ant



3.1.4 Regularized least squares

To prevent over fitting we added regularization term

so that
SSE

E CW Ew W

where is the regularization coefficient

Simple for of regularizer is as follow

weight decay
Ew W i 늘 WT W

parameter shrinkage



If we also consider s E then the total error function

becomes 솠 stn wir ni y 길 WT w 3.27

Set the gradient of 3.27 wr.tw to zero and solve

for w Then we obtain the solution w

WI 7 It IT I It



More general regularize r is used as follows

솠 Itn WTI An y 골홌 Iwill 3.29

where q 2 corresponds to the quadratic regularizer 3.27

The case of 9 1 is known as lasso



Exercise 3.5 and Appendix E

Minimize 3.29
Minimize Eo W subject to the constraints

m4 7 ʰ
0000

for some appropriate value of 7 7



3.1.5 Multiple outputs TO I WTIC

KID dimensional target vector t 딦

Our approach is to use the same basis functions to motel

all of the components of target vector

YCX.WS WII
tin

where y is a K dim vector w is an Mx matrix

of parameters and I x is an M dim vector with elements

y



Suppose conditional distribution of the target vector to be

an istropic Gaussian

single
value

PCH IX W β N CH I WITI CX BIDI

Given k tim N observations t ta tn we can combine

these into N x k matrix ㅠ target

Similarly combine the input vectors N into Nxt

matrix



The log likelihood

In p T1 X W1 p E ln N En l Wigan MI

In 倧卜 EF11th Winant

Maximization solution for Wl is given by

Win Iii iink Milk matrix

MXN NXM



If we examine this result for each target variable tk
basins function values of observations

W k III E k 이쁘다
at of observations

where t.lk is an N dim column vector Kth column of ㅠ

Thus the solutions decouple between the different targets

From now on we will consider single target variable t



ER input basis function I l
target t determine w

M

I dim Gaussian

YCH W WT ICH t t NCtIYCX.ws B

MX K

target t K dim determine W

k dim Gaussian

y X W WTI CX t t NCEIYCX.WI.BZ



3.2 The Bias Variance Decomposition 모델 평가

Frequentist view of motel complexity

Bias Variance trade off

When error function is SSE the optimal prediction is given

by hCX Eft IX St pct IX At

SE L Xt

We showed in Section 1.5.5 that the expected squared loss

can be written in the form
Prediction optimal solution 3.37

EEL J S3 Ycx h ppa dx Th tppcx.tl dxtt



Prediction
optimal solution

EL LJ S3 Ycx h ppa dx Th t PPCX.tl txtto
YCH WI

The second term arises from the intrinsic noise and

is the minimum expected loss

The first term depends on our choice of YC

Our goal is to seek ya making the first term a minimum

유한한 N 개의 관측 Y X i ㅁ

D t Why
tt ycy.mn modeling hex

매개변수 using y y W



Bayesian uncertainty is expressed through a posterior distribution

over W

Frequentist point estimate of w based on D

N observations D are independently drawn from pct x

For a given D we can obtain a prediction function y Ni D

Y Ni D and its squared error depend on D

The performance of learning algorithm is assessed by taking

the average over ensemble of data sets



Consider the first term in 3.37

h Y Xi D h x 42
一一 optimal solution

prediction by D

depended by ML algorithm

which depends on D

h Y xi D E y xi D h y Y2

Y Y O ES Y x O J
2

Y E Cy NiD h y Y2

23 Y X 0 EpLY Xi D JYYE.LY 0 hCx Y



Take the expectation writ D

E h y xi D hey 42 E Cy xi D h xkittitas
E h Y x O ES y x 0

IoT

bias extent to which the average prediction over all

data sets differs from the desired regression function

variance extent to which the solutions for individual data

sets vary around t hier average

sensitivity of yeti D writ the choice of D



We can obtain the following decomposition of expected

squared loss

expected squared loss bias t variance t noise

Where biasi S I EN y 0 h Y PC씨 ㅯ

variance 1 Edt ya 미 Ef Yai 미 門 水刈 以

noise 1 h tf pet dx tt



Our goal is to minimize the expected loss

Trade off between bias and variance

Flexible motels having high variance and low bias

Rigid motels having low variance and high bias

low variance

high variance



Examine the bias variance trade off quantitatively

L prediction models y El L

D OrThe average prediction

Ta i 亡홊 y x

and integrated squared bias and integrated variance

bias 文羔 1 T Xn h 개 f
approximated

by sum of an
variance 亢 羔 亡홊 Man T 개 f



3.3 Bayesian Linear regression

Bayesian linear regression can avoid the overfitting problem

of maximum likelihood and lead to automatic methods of

determining motel complexity
predicttttNCthtwn.RS

parameter distribution
3.3.1 Parameter distribution

Consider the prior probability distribution over w

Noise precision parameter β is assumed to be known

First we noted likelihood pct I w is the exponential



of quadratic of w

So the corresponding conjugate prior is given by

PCW NCW I Mio So
expwt w 가우시안

posterior α likelihood prior

where mean mio covariance So 蒸 N tn Iwi Ian β

Thus the posterior distribution in the form see 2.116

PCW t N WII MIN Su

where
min Su So mio β IT t

Si S β I I



Since the posterior is Gaussian unimodal its mode mean

내
MAP MIN

If we consider So I I and into i.e infinitely

broad prior then the mean mw reduces to Win

Similarly if N o without observation posterior prior



For simplicity consider a zero mean isotropic Gaussian

with single precision parameter α as a prior distri butio

PCW I α N WII 0 X I simple version

So the corresponding posterior

PCW It N W l MIN n

where
mir β Sa IT t

SN XI β I'I



Log of posterior is the sum of log of likelihood and log

of prior

ln pew It 로玆 Itn wi Ink wiw t constant

posterior

Its MAP solution writ w is equivalent to minimization

of SSE with additional quadratic regularization term 刀 二



priorLinear basis function function of
w N 8

input pat Ix w

target t

1 0.1
Y l W Wo t W JC

Observed data

generated by 0.3 052

with stt 0.2



Generalized the Gaussian prior

pan It Get itf exp if Iwi

in which 4 2 corresponds to the Gaussian

If 4 2 MAP solution of 내 is the minimization solution

of 3.29 which is SSE t regularization term

다 4 2 it is not true mode of posterior t mean



3.3.2 Predictive distribution

In practice we are interested in making predictions of t

for a new not the value of w

f1
Predictive distribution of t t detest

Pet IX t α B f P t IX W β PCW It α β d W

new input
一

y 에

一一

대한 posterior

where t is the vector of training target values

α is from prior assumption β is Gaussian noise of t

P WI α N W1 10 α I pet IX W β N t I YCX.WS β



The predictive distribution takes the form

training data

ERPLtl X t α B N t mi I y 02 X

new input

where
o y h I T So I X 3.59

uncertaintydata noise
05 W

By Qazaz et al 1997

아류 X 다 N

If N to then the second term in 3.59 it



Uncertainty

in predictions

governed

by 3.59



Sampling from

posterior

nd plotting
corresponding

motel



Remark

We have used Gaussian basis function localized

If is away from the basis function centers then

the contribution from the second term in 3.59 goes to o

ie left the noise β



3.3.3 Equivalent kernel kernel method

Substitute 3.53 into 3.3 expected prediction
MX I MX N

Y X MIN mi IC β ICXTS.IT mYBICxTSnIh tn

where IX 0.4 Oncat Si so β IT I and

I 1947
9

design matrix

v

Thus y y min is the linear combination of the training

set target variables tn



N

Y y min Σ KCA An tn
7 의

where the function

K X N β I XTSN I X

is known as smoother matrix or equivalent kernel

Linear smoother regression function makes predictions by taking

linear combinations of training target values

This kernel depends on An because of SN



Consider the covariance between yet and y cx's

COVEY x Y N J OWE WTIC WTICH'SJ

I X
T
SN I X β K H N

y x mean of N t I mi x B t EXT Su I x

Y y WIT I A where W N W I MIN Su

COVE WTICX WTICH'SJ E I XT WWTIWJ
ILXTMWMIILXSEIVTECWWT

TJIIICOVC
WD tECWIJEC.WS T

Su t MLMIT



For regression we introduced a set of basis functions so

equivalent kernel was implicitly determined

But we can define a localized kernel directly and use

this to make predictions



The equivalent kernel 3.62 can be expressed in the form

an inner product writ I of nonlinear functions

K N Z I AT I Z

where ICH β S ICH



3.4 Bayesian Model Comparison

The problem of model selection from a Bayesian perspective

The over fitting associated with Maximum likelihood can be

avoided by marginalizing over motel parameters

The Bayesian view of motel comparison involves the use of

probabilities to represent uncertainty in the choice of mom



Compare a set of L motels Milia L

Motel refers to a probability distribution over the observed data D

Suppose that the data is generated from one of motels but

we are uncertain which one



This uncertainty is expressed through p Mi

Given a training data set D we want to evaluate

a
PC Mil D d P Mi P D l Mi

PC 010
prior motel evidence

The prior can express a preference for different motels But

for simplicity assume that all models have the same prior

p 01 Mi motel evidence marginal likelihood expresses the

preference shown by the data for different motels

likelihood function over the motel space in which the parameters

have been marginalized out



G

The predictive distribution mixture distribution
posterior over models

Pct 1 X D 羔pgxl_uif.ITfPMiOl봎

Average of the predictive distributions pet 1 x Mi D of individual

motels weighted by the posterior probabilities p Mi 10

For example two motels

M
delle

M2

belle dblh.TL

Motel selection i use the single most probable motel alone



Consider model Mi governed by the parameter 내 The motel

evidence is given by

PCD 1 Mi 1 P 01 W1 Mi p M1 Mi dm

The model evidence marginal likelihood p 01 Mi can be viewed

as the probability of generating the data set D from a

motel whose parameters are sampled at random from the prior



Note that

PC 내 10 Mi
미미내

if값쁭
The motel evidence is the normalization term appearing in the

denominator in Bayes Theorem when evaluating the posterior 내



Consider a single parameter W The posterior distribution

over W is proportional to PCD lw PCW

For simplicity assume the posterior distribution is sharply peaked

around the most probable value WMAP with width ㅿW posterior

and the prior is flat with width low prior so that

pcw Yourprior



I

Thus we have a simple approximation to the integral over w

PCD 1 P 01W pcw dw p D lWMAP
OW posterior

W
prior

so en pco ln P 미 WMAP t h

났蒸햖
a齒 metitograd ven

by the most probable
complexity

parameter

Wposterior ㅿ W prior then the second term is negative

So it increases in magnitude as the ratio OWpathswprior gets

smaller If the parameters are finely tuned to the tata in

posterior then the penalty term is large



1 1

For a motel with M parameters assume all parameters have

the same ratio of LOWposterior low prior then we obtain

a similar approximation as follows

ln P O ln p 01 WMAP t Mln gif뾳

Thus the size of the complexity penalty increases linearly



3.5 The evidence Approximation

Fully Bayesian treatment of linear basis function motel

Introduce prior distributions over hyperparameters α and β

Make predictions by marginalizing writ these hyperparameters

and parameters w

But the complete marginalization over all of these variables

α β and we is analytically intractable



Discuss an approximation in which we set the hyperparameters

to specific values determined by maximizing the marginal

likelihood function obtained by first integrating over w

If we introduce hyperprior over α ant β the predictive

3.49distribution is given by
posterior over w

PCT It 11

neiii
PWt 2T.PPQ.PL tWItXt β

T posterior
3.8

Here we omitted the dependence on input



If posterior pcx.pl is sharply peaked around I and A

then

pet It p t It If 1 pit I 내 A put It If dm

From Bayes Theorem the posterior distribution for X P

P ㅧ.pl dp tlxp p d B

So if prior is relatively Hot the values I and I are

obtained by maximizing the marginal likelihood function pal t.pl



Here we evaluate the marginal likelihood for the linear basis

motel and then finding its maxima

So this will allow us to determine values for hyperparameters

from the training data alone regularization parameter

Two approaches of maximization of the log evidence

Evaluate the evidence function analytically and then set its

derivative equal to 0 to obtain re estimation for a A

Use the technique called expectation maximization algorithm

in Section 9.3.4



3.5.1 Evaluation of the evidence function

The marginal likelihood function pet I α β is obtained by

integrating over w

P H I α β S p HI W β PCW I α JW

By the result 2.115 for the conditional distribution in a

linear Gaussian motel we can evaluate this integral



From 3.11 3.12 and 3.52 we can write the evidence

function in the form Exercise 3.17

PCH I α B 릂 슰 f exp ECW Y dWI 3.78

where M is the dimensionality of W and

ECW β Eo W t α Ew W
3.79

11 t I WIR WT w

N NXM MX 1

WI NCMIN.SN



Furthermore

E ut E MIN E W1 MINT A W1 MIN

where we have introduced

A x I t p E I

together with

E MIN f 11 t I MIN i t E MINT MIN



A is the matrix of second derivatives of error function

and a.k.a Hessian matrix

A 77 E W1

Here we have also defined MIN given by

MIN B A It 3.84

si x It II

Using 3.54 we see A Si hence 3.84 3.53



Back to the integration 3.78

exp E ut t 내

exp E MINI exp I Cut MINI A m MIN dm

exp E MIN Y 2지세2 I Ai

Using 3.78 we can write the log of the marginal

likelihood in the form

In palais Elena E ln P E MIN I ln l Al ln 2기



is

In PC l Xp

X 5 10 3

Remark

The underlying sinusoidal function is an odd function

In M 3 case we obtain a significant improvement in

data fit



3.5.2 Maximizing the evidence function

Consider the maximization of pet lap w.r.tt

This can be done by first defining the following eigenvector

equation

PII Uli Xi Uli

Since A x It B II A has eigenvalues at Ti

Now consider the partial derivative of lal Al wirt x



We have

I In1A1 E In I at x E f l nai ta f it

Thus

o E I mi mw if it

Multiplying by 2X and rearranging we obtain

X Mi MIN M x 돌 r



Since there are M terms in the sum over i

3.91 5 돚 αiT depends on α

So the following α maximizes the marginal likelihood

r
α Tmr 3.92

Note that t depends on α and the mote min of the

posterior distribution depends on the choice of α



Thus this solution is implicit and is adopted an iterative

procedure

Make an initial choice of α and use this to find

MIN 3.53 and evaluate t 3.91

Using 3.92 re estimate α and the process repeat

until convergence

Note that because the matrix I'I is fixed we can compute

its eigenvalues once at the start

The value of α has been determined purely by training data



Similarly maximize the log marginal likelihood 3.86 wit A

Note that the eigenvalues Ti are proportional to p

and hence ftp is giving

Eln IA1 Es f In it x if 乃江一 F

So the stationary point of the marginal likelihood satisfies

o f 羔 仙 milani_ 슮

and rearranging we obtain



Tiger 焦 仙 mini

Again this is an implicit solution for f So choose

an initial value for B and calculate MIN and t and

thereestimate p using 3.95 repeating until convergence



3.6 Limitations of Fixed Basis functions

Models comprising a linear combination of fixed nonlinear

basis functions

The assumption of linearity in the parasites led to a

range of useful properties including closed form solutions to

the least squares problem We can model arbitrary nonlineariti

in the mapping from inputs to targets

But there are some significant shortcomings



The basis functions ㅴ are fixed before the training

data is observed

The number of basis functions needs to grow rapidly

with the dimensionality O


