C»\“P’be?‘ 3 Lincar Mokls S~ Regression
Regression  ( supervised  learning)
X :  D- Jimencional in put vector

t ° continueous torept vours obe

Lirear regression model @ linenr combimton of  non lineow

\>0\§'\; ‘S\AnCt‘(OV\S oy the \n Put vosr'(oub\eg w.\-\:\'\ om\;\us—l:a.b\e

. D
PO\V'O\W\Q'LQV'S . E. 3. O'S' bosis Sunct EOV\ > —5 ( ;L )
x’?.
3 X!

2

. p
w\nose, bas'(; 5 “r Xe X, xs\.



N observations 4 %n{ n=1,2,.. & Cotresponding torget tn
Grool ©  predict  Lthe wvolue o £ $or o new %

wplest  opprooch ©  Constructing  oppropriate  Fuactlen  yox)
Greneral  or  probabilistic perspective ! modeling.  the  predictive

q tstribution PCt L %) (unczr\:o&n‘by obout t for each %)

- True fn
® o ° e Observations
1 ¢ o)\? o ' —— Posterior Sample
o \ o/ L ) \ 4 - \\ 4
Y | 7 \ V. ‘Y
a 0 . J* ° / \ ' o
5 / \(\ l’ : / & ~
s s N ' R
U [ B LY . @
B oo
© 2
-2 R
-1.0 -0.5 0.0 05 10 15 20

Index points (2%)



3.\ Linear Basis Function Modelc

Linear combinations & $ixed nonlinear Sfunctions o input %

M
YOkW) = Wo 4+ P Wi #0K)

=\

where @.up) ore  known as  basis  functions, Wo allows Jor
any Swed  oFfcet ) colled bias .

Soe & ‘s convenient +to define on  aditional dumm7'

[ . . | _ o D"‘d:y\ M"d:W\
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where W= (W, .. wuy) ond BLR = L Go, B, ... By (R
\

In View of PY‘e-— Pmcess;m?. or Seoture exxtroi on | the
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feature can  be Q(Pf‘€§$e<§ oS * ?.3 US‘)I

Bosis  Sunctions
In Choapter |. there & oo swgle nput X ond  the  bosis
Sunctions  tmke the Sorm  of  powers of x ([ Bwn= X')

One lwmitakion & polynomial bosis ©  global Sunchions



Guoussioan  bosis  funchlone

& a CX-/“‘.;):
30 = exP{—f 3 5% ?

Where M govern the lowtions o +he bosts  functions (n
input spoce  and S gowerns their spotial sanle.

Sigmodol  bosis  Sunctions

goo = o (2L22)
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where & s bhe loguste sigmotd



Equ'(va\\en‘tlyf we on ue th ‘-bmsh' Junction  Since

tonh (&) = 267C20) — | @enerol liner combinotion o sigmoid

(s equivalent to o general linear  combination o tonh

Most o +the discussion (n dhis chagter s in dc?enden‘l: of

the Par‘t‘(cu\ar chotce. oF  basis



3.1 Madmum  likelihood od least  squaves

We have chowed <SSE  culd  be motiveted os +he moximum
likelihood  Solution under oan  osumed  Gupussian nose  model,
As beSoe, we osume Fhot barget + s glven by

4

& derministic Sunction Yo, w)  with odditive Craussion nowse

t= Ylrow) + ¢

where ¢ s o 2er0o mean CGrowusion pandom  varioble with

precision 3 Cinerse of variance )
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Consider inpu‘bs K =4 %,. %] with corresponding toreet
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EDCW/) = “2_’ D {'tn - \”/T Q%)T C3.12)

Consider First +he maximizotion of C3.1) wrt w .
Moximi 2okion o5 likeli hoed Sunction under o conditional Crowmssian

C3.t0)  Sor o linear model = Minimizing Ep CW)
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Setting this grodient 1t 2em  gives

N N
©= Y tn® ) — ( b @Cﬁn)?wn)T) W/
n=\ n=\

So\v‘m%. Sor V7 we. obtain b ) = ( ‘P.C;fn) >

which aore  Enown as nporma| equations Sor least square problem

Here Q (s on N RAM motri x~ colled :}Q.s'tg.n Mot whose

clements  ore gqiven by in,; = ¢ )
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s knowun os  the Moor - Penrose pseudo - mwere of B
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Leb ws see the role oF buas

| N M-

Epcwn = + ‘t.\— Wo = T

n=\ =l

O _
Seb ;uz, = © ad  solumy  Jor W,
_ -t _
Wo = ¢t — Z W ¢;,
o=\
whee we haw  defined = Lx



T\ms, Wo 8 +he dJdiSference between +the overoges off tn o

the weighted sum of the owernges ofF  bass Sunction  \elues

ASter ‘S’iné{v\% Wiue , Wwe on  moxim(2e logy. kel hood C3.11)
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3.1, 2 Gre.ome‘try of Leost squares

N —diwn

Figure 3.2 Geometrical interpretation of the least-squares
solution, in an N-dimensional space whose axes
are the values of t1,...,tx. The least-squares
regression function is obtained by finding the or-
thogonal projection of the data vector t onto the
subspace spanned by the basis functions ¢;(x)
in which each basis function is viewed as a vec-
tor ¢, of length N with elements ¢;(x,,).

M 7H

+
4= ()
N — dimensional space  whese oxes are  giwen by +n.

For $Swed ) basis functon  values B) (N dote POin‘I:s)

con be represenbed  as a vechr in the came space
N = dim



Dencte  F; by +ths veder, given by

pi= (B, Bt . Boke) (3™ colm of 3)

whee 5=0.) . ... M-| N3} MPHL| vecror

Let MJI AN and S be th M-dinm Subspo.ce, spomes by ¥

DQ'S'.MQ y = L Y (,#‘ , W) , Yc,ﬂ’_' W/)' ... YC”\N , W7) )T . BQ—WB 7
v - g
= ZW Y= ol t Wt W B

¢ on arbitmr7 lineor combination of @ Y lkve ony where

J ¢

in  the M- dimensional subspace S, y ol 2% tomponent &

%oé.b& WO... WM-| % g-?‘



SSE (3.13) s egual Cup Ho o Socdr %) o Ny -1

C squared  Gudideon dJistmnce)
Thus  the least square  solution W7 C.O"%FWS to +that

chotce  of Y lying in subspace S ad  bhab s closest o %



3. 1.3 Sequen’cim\ leo.rnim}

Aka on-lire algorithm

A Pfl\[ "y the technique oF stochastic gredient  descent, also
Knewn oS seq v.en—l:‘(a\ %_r'o&r(ent &escerft'
JF the ermor Suxtion E= =, E, , then ofter presentoition

oy pattem N, SGrP updedes Wy Using

CT+1) CT)
W/ = W - N V@

where C. (terofien nuwmber., N lwnin% rabe  parameber.
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3.1.%  Regulorized least squores

To prevent over — Suting we odded regularizodion term

o ok
S6E

Epew) + 7 B W)

wh ere n ‘(s the re.gu(w'; i.'-od:ton coeSFix en't.

Swmple  Jor 0¥  regu larizer g as  Sollow
weight decoy

Ewlw) i= = W w
parometer  shrinkage



T+ we also consider SSE, then the +total error  Function

becomes 1 ﬁ’
2

n=\

N

p R
{ tn - VWTQ D"n)t t = wr T wy C3.27)

Se':& the %-rod‘(en’t e (3.20) w.rnt W ‘o 2O o Solve.

S5or w. Then we obtein +he  soluibon wy

w= (nL+ 8 3) 3 4



More gprera|l rgularizer ©  uwsed os  Sollows

M

N p R
1S {tn-WBem + LT (wd (3.29)
n=\

2 5=

where q =2 Gorrespords to  the Qquedratic  regularizer  (3.20)

The case ofF q-=\ s known os lasso .



Excercise 3.5 o Appendix E
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5‘0\“ come,
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Minimi2e
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appropriote  value

Figure 3.4 Plot of the contours
of the unregularized error function
(blue) along with the constraint re-
gion (3.30) for the quadratic regular-
izer ¢ = 2 on the left and the lasso
regularizer ¢ = 1 on the right, in
which the optimum value for the pa-
rameter vector w is denoted by w*.
The lasso gives a sparse solution in
which wi = 0.
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3.1.5  Mutiple outputs % P By — W 80

3
E>D dimersional  toegeh  vedor  # = (| )
Our apfmac}\ s 1o wuse +the same bass Hunctions To  mode]

ol o +Hhe com Fonen'bs oF targgt  vector

Y\
Yer, W= W pww = | ;K )
M/-diw

where Y & a K - dim Vectbh, W/ s an Mx® moErix
o3 porowetlrs  and @ CFH s« an M —dim vector with elewmerts

@. L)



Suppose  conditional  distrbution of the targl wvechor o be

on ‘(s-b'op'(c Groussion

single. volue

4
PLE LR, W, ) =N CH | \/\//Téw),@)

Giwen KkK-Nwm AN observations &, &s, .. 4. W con combine

these into Nxk wmatrix T, (W)

Slml\oxr\y combne the nput  vecbors K, W, .. K, inbo AXD

mobrix X



The log likelt hood

T L
VE go(£)- &5 I k- Wi B

n=|

. . b
Mosimizotion solution Sor W & given y

MXN A%

. k. mobrik
W, = (88 &' T M x

MXN  A/M



TF we exowmine +this result  Sor eoch torget  vonable
boss funtion volues of observations

-l 7T =t
We = (,QT@) ® &, = é”fs
bowget & obserwdions

where  H¢ 5 on AN = dim  column vechor K% column oF -"-)

Thus,  the solutions decouples betuween the diSSeredt  towgets .

From now on, we will consider single torget varioble +.

Vs
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32 The Bias — Vorionce  Decomposition ( L T47E)
Frequentist  view & model com P\ef'(‘ty

Bias — Variance tvode — ofFf

W‘r\en ervor fqnc't'(or\ [y S SG , the o P‘t'( mal PV‘Q'&C—ﬁ on (s ?‘\VE"\

\97 hig) = IEtE-I:(xJ = g + pCElg) dt
Sse LCxt)
We showed n  Sectwon 155 thot  the expected  squared loss

con be written in the Sorm
Prediction optimal solution C3.27)

ELL] = S { Yory - hery f'chdxc + ({hop-t f' P, t)dxdt



Prediction /orti*m( solution .
ECL] = § ng)- hew f pandx  +  § ThO—t | put)dwt

Y Ck wr)

The second term orises  From +he ntrnsic  netse  ond
s the  minimum exFec'tad loss .

The  Sirst  term  dperds on  our choice & Yy

Our goal s 4o seek Yg) wmaking bhe Fist term o minimum,

Yy i P)
/4 .
> D — W/ —bD y(;y ,\,,,ML) mo:hlmg- ACJF)

(2] 7"\%% US‘M% Y L&, W)



BN/S'(M . W\C@'ﬁ*‘lﬂ":y s expresse,é 'l:hrough o Fc;be"ior Jistr bution
over W

Frequentist « Po‘m'l: estimote o W based on D,

N observations D ae indperdntly drown  $om  pGhop)

For o qwen D, we wn obtain & prediction funcbion  Yex D)
YCRiD)  ond s squared  error  deped  on D

The pRrformance o learning  algorithm s ossessed by taking

the owwge ower ensemble of Judon  sebe



Considey +the SFirst Hrm n C3.37)

2

C&: D) — hig)
A Yk \_t_- optinol soluton

predicion by D

depended by ML olgorithe
which depends  on D
L yorp) $E,TYe0)] —hew |

2
= 4 ywxp) - EDE )’w‘,D)]T + ﬂEDllyw;D)J - hC*)r'

+ 2] YLK D) - u:,,l:ytxc;w]t { EpLyeipd] - hf#)r



Toke the expectation w.rt D

E,L4vywp)- hew ] = { E,Cywp)] - hcvz}"

p B

biag
p B
T {EDU yLsi0) ~ €, yasm ]} ]
\D Voonce

bios © extent 4o which the awroage prediction over all
dobon  sebs JFes Srom  the  Jesired regression Sunction
vorione +  extert to  which the solutions  for  individual dodm

sets  vory  oreund thier  awmge.
( sen S'(‘E\v\(‘by d{‘ YC¥, D) wnt the cho‘(ce a D)



We con  obtnin the  Sollowing decom position &  expected

squased  less

expected  squared losg = Chias) 4 Vvarante + noise

Where Q)‘wus)l = ({E,Cymn)) - hcvr)})' PLR) d¥

vorionce = ) \IDU yekspd) — &L YC*'JD)J]l] P dy

notse = § 4 hawy— tF pore) I 4t
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Figure 3.5 lllustration of the dependence of bias and variance on model complexity, governed by a regulariza-
tion parameter ), using the sinusoidal data set from Chapter 1. There are L = 100 data sets, each having N = 25
data points, and there are 24 Gaussian basis functions in the model so that the total number of parameters is
M = 25 including the bias parameter. The left column shows the result of fitting the model to the data sets for
various values of In A (for clarity, only 20 of the 100 fits are shown). The right column shows the corresponding
average of the 100 fits (red) along with the sinusoidal function from which the data sets were generated (green).



Examine the bias = voronte trade - off quowl:i'bo\vely
L prediction models ¥, p=i, .. L
The oweroge Pre&‘(c:l:"con

-
> Yy

~ . \
o) = —
Y - =

on 'm‘bzg-vod:ed Squowexi b oS ond irff:eg.m-becl vorionCe

2 v X — 2
Cbios) = % Z § YCXa) = htxm |
(&9\7“)‘.\“«047?&‘ n=1\
- 1 A )
Vowrtance = N '.‘Z;‘ - LZ:‘ {)’ (Xa) — )’Cin)?



3.2 Payesian Linear regressi on
Ba)resiav\ | ineor regre,sion con overd  the overSitting. Pmb lem
o  maximum  ikelihood od  leod b aubmatic methods  oF

Y}G[Z@‘ (nin odel e
MnIngy. M Complexity = Fvex\'(cﬁ X

t ~ N CH ylrw), (i" ) Va
\_/ R Povameter  Jistribetion
3.3.\ Powrometer  Jistribution

Consider the Prior pro bab'c\'cbf dstrilition over w

Notse precision paowmeter B s ogumed to ke Enown

Fist, we  noted  likelt hooy PCEiw) s +the exponentiol



of Quoudm'ls'cc of \"74

So the <Orrespon d‘mg_ conJu ggcl:e Prlor S i ven by

posterior oC  I\kelihecd - prior
where meon m, covorone S, T NG w6 )
Thus  the postercor distkbution n  the  Sorwm (see (2.116))

pCw | ) = N Cw ] my, S,)
where my = Sy (S my + B8 4)

S;: S: + @@Ti



Sinee  the posterior & Guussion (Unimedal) | itls mode = mean

> \VV/j = Ml

¥ we consider Se 1= otﬂ‘I ond oL —H0 e. 'mf‘ini‘bel)r
lomad PP.(OY‘ , then the mean my, reduces +to WL

cw(\ar|7 F N=o ( wihout obserwdion), posterier = prior



For s‘w?l'(c.'dy, consier O Rero - mean  (sobrepic  Crawssion

with single Prec,'icion Pme‘ter X aS o  prior Jstribution

PCw o) = A/ Cw | @, X' L)  CSimpe wrsion)

So tHe comesponding  posterior

PCW (#) = A Cw/ | My, S,)

ml, :(&SN @T'ﬂ‘»

=\

S, = 2I t 0%



L0g 5] Poﬂzr‘mh < +4he <cum ©oF lqa_ & likelihe? and 10%_

o Pr'cor
e & T 2 X T
La plw |14) = - 3 Y {ta—w @%)i - W w t constant
Fos-l;e,r'\br "=l

Its MAP colution wrt w © equ‘\ wlent 1o minm( 2ot ton

of SSE  with oNitional quadrotic rpuladsotion tem A= %/g
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Figure 3.7 lllustration of sequential Bayesian learning for a simple linear model of the form y(z, w) =
wo + wiz. A detailed description of this figure is given in the text.



Gemreralized +He Craussion prior
P M

PLws [ ok) = [9_ (Y __|__]

4TS [y
L s | e (-2 2 lwil )

4=0

w  which q=2 corvespords  to the  Crau sion.
T q=2 , MAP sdution o w s the minimidation sol ution
ofF (3.29) which s SSE t  regularizction term

[ty qaw.' t & nt true. ( mode oF Posi'erior # meon )



3.3,2 Predictive  distribution

In practice, we ore nterestel in  moklng predictions  of t

Sor oo new # (C nst  the wvelue & W)

N~

PCE | %, 4,%,8) = S Pt %, w,p)pew |4, #) dw
[ S ___
new input W/ ot U3 Posiknor

where £ s +the vectr ofF ’tnm\m‘mg, "blna?t \MLVQS

Predictive  dishibution & +

K is fvom prer asumption s Gousion nose of -+

PN"\“): VARV AR-S D(-‘I) PQ-I-_ | %, \M’,P) = At YC.*,W),(;‘)



The prei ctive distribution tnkes +He Sorwm

, ‘tmining_ Joo- eR
PUbl %, £, %, 8) = N (EL My ), S end)
new 'm|>u17
where 6},2050 = -(g- + PR S, B LR C3.59)
— \
Jobt nose unczrhwni)'
o W

By C Sazay et al., 19an]

> B

¥ N>, then e seond tem n (369) —P '/(5
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Figure 3.8 Examples of the predictive distribution (3.58) for a model consisting of 9 Gaussian basis functions
of the form (3.4) using the synthetic sinusoidal data set of Section 1.1. See the text for a detailed discussion.



T T

Figure 3.9 Plots of the function y(z, w) using samples from the posterior distributions over w corresponding to
the plots in Figure 3.8.



Remark
— We  have useq Crousson  basis  Function (local t2ed)

- O /8 S owoy from the bosis Functon oerﬂ:ers, then
the contribution Srem the secod torm in (3.5A) goes H 0

e. |t the nose (5-‘.



3.3.2  Egquiwlent kemel ( kemel wmethed )

Substitute  (353) o (3.3) ( expecbed  prediction)

M%\ MAN/ N

Yok, my) = my pp = pdwy S, BT b = ?j EW'S, B4,
|

where BBz (g, . B, =S 408 8 o
B k) P k)

= ( e ) ®sign  mabrix

AN B )

Thus  yegmy) is the linear combination of  the Prosning,_

¢cet twreget variobles &y,



:) N
YOk M) = 2 kL& %,)tn

n=\

w\r\ev‘e, ‘th, Suﬂd':‘( on

Eox, %’y = B 8w S, k)

s krown as smeother mobnx o  equwaledt  kernel

Linear Smeother ° re ton  Function MmMakes Pl'edid:‘(or\s b)r ’b&l’:'mg,
linear combinations of troining Lowropt- volues

This  kerpel dJeperds on  Kn  becwuse o S/v



Consder +he cowrioane  bebween Y omd  YCH)

U

CoVLYLE) , YC#)] = vl W B, wi' BLx’ ]

'S, BL) = [ kCx %)

yek = memn of A Ct|my o, f W S, Bww)

NCw i m,, S,)

y C¥) <= W/T P (K) where \4
VT W B, WdLh] = EL 8w ww' 8u)]— & L0 my, m] Hueh

Py ECWw™] §p

= cov(iw] + ECwW) ECW/JT

= S, + M, mt



For regression , Wwe inbroueed o seb & basis  functions SO

equivilent kermel wos  implicitly defRrmined.

Pt we con define o loolised keme| d'mactl)' o  use

tis  to  moke  predictions



The equivmlent kernel (3.62) con be expresed  in th
in the Fom

N \nner
product  w.rt PDxr) o  nonlinenr Sunchions

KLk )= T G

vhere  Dup) = B S,iz oOm,



3.%  Bayesan Mokl Comparison

The prodem oF mokl celection from o Bayesan  perspective.
The owr— fitting. omociotd  with  Morimum  [ikebheed con  be
ovoded by wmorgindlizing. over wmede| porameters

The Bayesian view oF wokl comparison inwlves the use oF

pfro bos.b'( lities 'bo yQPre,sej\‘t uncewl:wn‘lzy in  the clf\o;ce 65“ NOVb»l .



Compore oo sstc o L modls SM,‘J Azt b

Mo:b\ V‘Qfelr‘s to o Probab'(\ity d(S‘tV‘( bu'\icon over the observe,& da‘ba D

T T

Figure 3.5 lllustration of the dependence of bias and variance on model complexity, governed by a regulariza-
tion parameter )\, using the sinusoidal data set from Chapter 1. There are L = 100 data sets, each having N = 25
data points, and there are 24 Gaussian basis functions in the model so that the total number of parameters is
M = 25 including the bias parameter. The left column shows the result of fitting the model to the data sets for
various values of In A (for clarity, only 20 of the 100 fits are shown). The right column shows the corresponding
average of the 100 fits (red) along with the sinusoidal function from which the data sets were generated (green).

Suppese  that the Jdoda s gereroded from one  oF mokls bt

we ore  uncertrin which one



This uncertrinty  «  expresed  through pCM)

Griven o~ ‘l:ro:(n\mcg. docta.  set 12 we want +to ewluate

&

CMLD) o€ PLM;) PLD I M,
P g P P ) pCo(6&)

Prior  mokl evidence
The prior on  express o preference  for  {feredt  models,  But
Jor  simplicity  assume bt ol wmodls heve the some prior
PLD I M) mod ovidkree ( marginal likeliheod ) expresses  the
preference  shown by the do  for  ddferent  modkls,

C likelihood $unction over the wmodel spoce in  whch Hhe powvowmeters
have been morainalized out )



Tke Fved}c'b‘gve, d'(s-u-‘( but"(gy\ C mixture  distrn bu‘b‘lcf\ )
posterior over moels

L
pCt 1 %,D) = E‘ (1@\ #,@DP@P_)

Avernge of the predidive distributions  pet| %, Mz, P) oF  individud
mokels welghted by the posterdor probobilities pCM:zID)

Fer e.xample,, twe  models

i 3
o~ b

Model seleclion © use the cingle most  proboble modkl alone



Consider  mokl Mi govemed by the porometer W, The wodel

eudnte s  gwen by

PLP LML) = | PCRLw, M3) pew | Mp) dw

The mokl evikme ( marginol likelihood) PLDIM:) wn be wviewed

oS the Frc\wxlo}lity o eererafing the It set D Ffrom a

model whose porameters ore sampled ot rondom  from tHie prior



Note that

_ PCDUw, M2y (W1 M)

PCD M)

The N\Q\b‘ ev}thnce ‘\S the normox“ 2otion  term appmr‘?wg_ in  the

derominator  in Bayes Theoem when ewluating the posteror




Consdar o swngle povrom eter wW. The Fos'ter'(or st bution

over W \s Propor‘t‘conal to FCDIW) PCW).

L )

Yor st P\'( c'dzy/ oasume, the Fosﬁeﬁor- distrbution Skourp\, Peouk‘eé

oround -Hne, moc<t Fmba\.ble. volue WMAP with width Awfwﬁeﬁ.ok

Figure 3.12 We can obtain a rough approximation to N oo
the model evidence if we assume that -—
the posterior distribution over parame- ( \
ters is sharply peaked around its mode
WMAP -

YA

WMAP w

< >
A/wprior

OJ\A -Hne Prior- 'lS :H OCL' w“:h wH‘H; D W Pr'(or CQ ‘H\a\’b

|
pLw) = /Awpr'cor -



Thus we have o swmple opprosmation to  the ntegial  ower

w .
(P = § peoI P b 3 PLDIMygp) St
MAP AW
prior
—_ _ &W prior
5it bo dodn @iven — alty of k/lae
by the most ?mbable pen 7‘ mod|
parameter Cop?[eﬂw

AWPG"J@"(O?‘ < AN W FT.COP , ‘Hﬂel\ 'khe, SQCD"A ";ef'm i& negpdj\e ]

So it inwresses in mognibude, as the rvhio AWF""’/AWF-.., Qets

Smaller. TF  the porowmetes ore Sinely tuned 4o the Yodm in
posteror~ . then +He peralty term s lamge



For oo molel with M pammeters | ossume  oll porometers  howve
the come rotio o DWpsterir fowoi,., then  we  obtas

o~ Swmilar OLPPTOX‘\ motion oS Sollows

QA\P(.D) ~ on P(_ DIWMAP)‘(’ MQA(AWPWQ?)
prior

Thus, the siae ofF the complexity Penalty increases  lin=owrly



3.5 The evience A PP rox wmotion
F““Y B"‘Yeg“m treatment 5 lineoyr basts  Function mol

- Lntroduce Prlor Jisting butiong ower hy PerpOrOmeE 2rsS ™K od @

~ Moke prediions by marginalizing wrt  these  hyperporowmeters

ond Pa.v'ame(:evs W/
— But  tHhe complete Marginal sdtion owr oll o dhese voriobles

L o W S N\alyﬁml\y nbractoble.



Discuss  an  opproximation n  whch we set the hyperparamettrs

\

mourgina|
lkelihood Function’ obtoined by $it integroding over w.

to  specific walues dJetermined by woximiding the

5 we inbrodke hyperprior over oL am (3, the predictive

distn bution ¢ given )07, | C3.¥A)
posterior over W

PCt 14) =] peElw,p chl’&,@) POCEL4) dwr doc f8

Mode]  OSsumption hyper osterior
3.8 Perp

Here we  owmittey e “ependence  on ‘U\F(it >



I ch'l:er:(or pCX,p lE) s sl\o.rply penked ovround o ond ?4\

/

+hen

Peele) = peble,2,8)= ) ptiw, B)pewie R, B)dw

From Bayes Theorem, bhe posterior dictibution For oL,

PU,BlEd oC PLEIXP) PLY,P)

So f F"ior‘ S re|acbwe\7 £ ot , the walues &\ and /(3\ ore

obtoined by moximiaing  the  marginal  likelihood Sunction plt | ot p)



Heve, we eunluate +he marginal lkelihood Sor de  linear baglg

model and HBen Tiding it moxima,

So Hhig Wl allow u 4o IEmine values For kyrerPumweters

Crom +the -bﬂﬁnzng, dob.  olone C DC/F =~ regulori 2ation poroweter )

Two a.Whoadng cfy MWQN‘\-&OC&OV\ 0'5' -Hne, [Og_ evidence

— Ewluate 4he evideme Sunchion analytt aa«“y ond then set s
dervotive equal 4o O b obtoin  re-estimoution for K, g3
— Use d4he {docdhnique  colled expectotion  moximiseabion  algorithm

n  Section 4l.3.¢.



3.6 1 Ewludton 65 the evdence SLunction
The nravginag| [(kelihood  Sunction PCt Ik, ) obtoined by

'\M:e%rocl:‘(mg, over W

Pk, () = S P Ll w,p) PCW X)W

By the vresult C2.115) Sor +the conditional distribution in a

linear — Crauss (an MOde‘ ;. we con evaluate ":L‘(s ‘m‘(:e%,ml,



From, C3.01)_ (3.12) ad C2S2) we cn write the evidence
Junction n  the  form (Sxceruse 3.17)
6 N/a o MA
P 1,80 = (£) (=) | expi-ELuny dw €3.08)

where M s +the d }wensionali'l?' g W and

EWw) = @ Epw) + X By W)
C3.n9)
2, ® T
Lre-Bwit + 3 wiw

N (Axm)(Mx))

W ~ ANCM,, SI\;‘ )



Furthermore,

ECw) = EWm) + -‘3 Cw — Mw)T A CW — my,)

WL\ cere we "\awe, tntroduced

A= L + & &
'boge\:'nek with

ECmiy) = —f_‘"'l' —im‘ul\z + % M‘/J mi,,



A s the mabrx oF second denwtives oF  error  Function

ond o k. o~ Hession  motrix

A = V7 ELwW)

Hee we hae also ®fned ™y,  giwen by
my, = ¢ A &'+, C3.80

Sv = XLtp3'P
U;(n%_ .Sy , we. SCee A = S/V‘, hence CE¥P = C3.53)



Back 4o +the itegiation C3.N8)
5 exp (- Ewwn)) dw

= expi-Etmyf [exp] -3 cw-m)TACw-m,)] Juw

)“/:_ -A

= expi -E cmtﬂ)‘l (2% | Al

Usig (3N8), we con wrie +the log o the morging
|kelihood n +the Form

fn PCBIXE) = Mpax + T 2af - ECMy) ~ L2 lAl= £ 2nCan)



lo
V%-

Figure 3.14 Plot of the"model evidence versus

the order M, for the polynomial re- _jg}
gression model, showing that the
evidence favours the model with

M = 3. =201

=22

QV\ FL-&‘MtG) D4t

K= S (0° _26 -
0 2 4 6 8
M

Remark

— The urderlying swnusodal Sunction s an odd  Funcbion

— In M= 3 cose , wWR obtnin o s'(gniﬂcm‘t (wuprovamen'b in

dodn  S§it



3.5.2 Moximiat ng. the  evidence Function
Considerr the moaximization o Pl (L) wrt .
This cwn be done by Fint defining the Sollowing egenvector

equection

(B B) W = 7y W,

Since A= L + 23" A has  eigenvalues %t i

Mow consir Hhe Farﬁa\ Jervative o InlA| w.rt oL,



We l‘la«ve,

——— — 0n T C S stR) =
InlAY = © CA; tX) = ok ;Z nCh ZL

ook A

o X

Thus |
M \ S
T — omm——
o= T4~ '(i M My — 3 & 3%

' we obtain
Mu('b'(p\y'mg. \DY 2K ong Y‘e.Nmng.mg_,

l = r
AM M, = M- & >

R
~ it

l

7\; 4+




Svee there owe M terms in 4the sum ower A

c3.an F= 2 " ( depends on %)

So  the Sllo w‘m%_ % moximizes  the warginal lik=li hood

oL = m,T ™, (3.92)

Nete Hot & depenk on ok ond the mok mi, o the
posterior  distribution \lepead; on the chowce o o,



Thus, this soldbion s mplict ond & adoplted an RO
procedure
Make on incbial choice of &K ond use +this o Sind

My C3.53) ond evawte ¢ (3.9)

Using (3.12)  re- estimate o ord the process repest

until  conwergence.

Note +Hhot beamuse the wobrix @TQ (s Sixed, we on compube

tts eigenvalues once o bhe  start

The wvalue oF K  has been Jebermined purely b)’ ‘bu‘m‘mg. doho.



Simi ‘“’”‘)', moxim e the log. morgina| likelihoed

(3.8 wrt (3

Nete bhot the eigenvalues i  ore  prportional to

& S \ > N

So  the S'bod?‘(onary pount o5 the Marg,(m\ | kelthood

N & T ¢
26 2 %\ ) b & k b

=g
G

sotis§es



¢ f b —mT 3 2
7;’/\/—0' '\=“( n 'N c*n)t

Agoin, this is on imphct solution Sor . So  cheose

onN nitia| volu e Sor (3 o Co&.\ culate ml,, ond ¢ oy 'khe:\

re - estimate (3 using (3.a5), repeating wunti|l convergence,



3. 6 Le mi Lot onsg o‘S‘ F}xe:\ Bou;}g :Qunc.‘ti ong

Models c,ow\?r}sin%_ ~ lineor combination of Fuixed non | ineo.r

bosis  functions

\"." 4
The ossumption  of liveartty in  the porometers led o a
Yonge of usesul Fmrer‘fles ir\clud'mg, closed — Sorm solutions +o

the least <quares problem. We con modl orbitrary nonl inearities

n the mapping.  Stom inputs 1o targetbs

Put  there are  some cignificost  shorbcomings



The basis Sunctions @ (f) ore Sixel before  the Bbouning
dotoe s obsered.
The number oF  basg Sunctiongs needs 4o grow rapidly

with  $he Jimensionol i ‘\:y V.



