Chapter I Lircear Models S  ClassiFiotion

T.nFur\T vechr * € \RD

Croal oss@gn K to one o K disaete clases Ce, K=I. K
So the input spoce is  divikd inbo  dJeasion vegions C R )
whose boundorles ore  called decasion  bourdaries o  decsion curfaces

Lincor wmodls For cloasiFiation meon that +the decswon bourdarieg

ore  |inear Sunctions oy ‘V\de vecor XK

Ci.e. D=1 Jimensiona| |ny{>er]>lome)




Discrimnant models

Directly estimodes the decision beundary  bebween  casses
between closses  without  modeling,  Eheir  individual  distrbutions.

Probablistc.  models
Two cdasg problem ( binowy NFhaen'baﬁon)

Single targst warable t e {0, \f ot t=| represerts

clos <& o T =0  represents clags C,

Te wlue & T con  be ln‘b&Pmﬁe& os the Fmba.bﬂi'l;y



K >2  dosses problem  ( multiclass )

K - dimensionn]  veclor & one hot vector (l-of-k coding)
T te class s ¢, then ol eclements + o £ ore 3ero
exeept 5, = (.

Agoin  we n interprete  fe  as  the  probabiliby  thot  the

closs s Ce.



In the linear wede|, the wodel prediction vyex,w) wes

gwven by oo lmear Sunctien o w.

For  clossificotion problem, we need 4o predict  disoete  clag

or  wmore  gerevally posterior  probabxlities

= generolize the mod| n which we “tronsfoam the [inear

Sunction of w  using a nenlnear  Sunction  §C) so dhot
YO8 = SCW % + we)

§() s kown a5 an actiwdon Functien. Its inverse i colled

o Lk Sunction'



The decision  boundaries correspond o YCg) = ceonstont

(e. W' + W, = conctorit) omd henee dJdecsion baurdanes  ore
lineor  function oF %

In contract to the wodls used Sor reqression clossificotions
ore net linear wn w e o FC)

As regresion models, we an use & Fxed nonlinear tromsSowotion

with o vector oF basis Sunctions D C¥).
We begin by considering clossiFicotion dired:ly in  the orginal

(nput  space %



I ( Discriminont  Functions
Dsuiminavit  Sunction takes X ond assigne it one o K
clag;es Ct

We vestrct ottention +o lineor  dJdiscrminonts C decsion  boundares

ore  hyperplones )



& 1. Two classes

The  swmplest lineor digrminont  Sunction

YC#) = W/Tﬂ + Wo

where W s the weght vechor ond Wo & a baas,

An  inpub ¥ s ossgned +o ¢ ¥ YR Zo ony

L}

S ossigned +to G (F Yy &) <O

= decison  boudary ¢ defmed by  y(¥%) =o.
/4
vector



Arbitrary  pot %  and let XL be s orthogona|l  proyection
onto decis ion surfoce  So  thot

W/
— - —
X X1 + Wi

Figure 4.1 lllustration of the geometry of a 4

c'*) linear discriminant function in two dimensions. y>0 2
The decision surface, shown in red, is perpen- y =0
Wkereo r - Y dicular to w, and its displacement from the y<0 R1
" “’/ ll origin is controlled by the bias parameter wy. Ro

Also, the signed orthogonal distance of a gen-
eral point x from the decision surface is given

by y(x)/[[wl-




We cn use dummy 'mpu‘t X, =l ond then deSie

W= (Wo, W) ont F:iz (X, %) So thab

yux) = Sty
In +this cse  the Jdecsien boundaries are P —dJdiwensional
hyperplones  passing.  through the orgin ofF D+l dwm input

spoce .



g 1.2 Multiple classes

Mow  consider +he edencion of linear discriminants +o KO2
clagses

One ~ versus — the - rest classifier

Use K-l closiSiers each of which solves o two — class

Froblem separating cass Ce From other clacs

This  wmebhod leods 1o regions that are  ombiguously clagified



One — Versus — one  clossifer KCQ_

Use kCk -0/2. d(SCh W\;V\M't Functions one f’Or' e,ve,vy

Fosible Fouir o)y classes.

Ths  Hoo run  into  +the  problem &  ambigueus  regions.

We need +oo many clossifers

Cy

not C;

not Co

Figure 4.2 Attempting to construct a K class discriminant from a set of two class discriminants leads to am-
biguous regions, shown in green. On the left is an example involving the use of two discriminants designed to
distinguish points in class C;, from points not in class C. On the right is an example involving three discriminant
functions each of which is used to separate a pair of classes Ci and C;.



Conser o single K- class dissaminant  comprising K lineor

functions  of the  Sorw (Dt)xk
W & [RD W?aq-kt vecor

T
Ye W) 1= W X + Wgo Weo & [R. bias

Assign & poiit % te cas G F Ve SV, 00 Vi# K

So the Jecisten boundouy between Ce om CJ (s g.‘(ven

by (,"Wg"W/,;)T K+ CWgo = W;5) = O,

j.e.  P-1  Jimensional }\yFer?(W\e.



Figure 4.3 lllustration of the decision regions for a mul-
ticlass linear discriminant, with the decision
boundaries shown in red. If two points xa R
and xg both lie inside the same decision re- <
gion R, then any point x that lies on the line R,
connecting these two points must also lie in
Rk, and hence the decision region must be
singly connected and convex. R

— X 3

Dedsion regions ore  singly connectd  ond  convex.

leb  %n ond #g b in Ry, let 2 be s

Ri= N K + CL=7) g ot N & |



Since e Jisciminant Sunctions  owe  linear, we  obbtoin

TeC?) = MYe k) + Cl=7) Y Ukp)

Bewmue K, ond Hg lie insie Rg, YeC%a) > Y, Lko)  and

YeChg) > V5 C%g) Y itk, hene Ve @®) > VB Yizk

’



4 1.3 least <cquores For classiFicotion

Consi®r o classificotion  problem with K closses  with
|-eF-F  scheme  Jor the buwgeb vedm .

The wminimization & SSE  Sundion & the wethed thot

T opproximates  the  condttiona) expectection EC¥\ %] of the

Yoot  volues AHven e in Pu‘b K



We  wn gproup these lineor models  using  vecor notxdion

—~ Y %)
Yl i= W % = ( = ) K=dim
Y )

where % & the M%men'ﬁed in Pu't vecbor (I, )ﬂ)T ong
(PHOX K

- — -~ ~ ~ T
W = (W’u. WL, . ,W/g) wy = CWko , W)



Inpwt % s ossigned 4o the  class  for  which  the  eutpit
Ve WX (= wik+ww) s lorgedt

Determne the povometer  modrix W by minimizing a SSE,
Consikr o broining, ok seb 1%, da] NS, LA

Hn € |RD, ta & |Rk (one hot vector)
NxK

Define o mokrix T  whese nu" row (& the vechor -lz:
A% D)
" K whose n? Fow s the vechr P =C1.%,)7



CSE  Sunction con be written os

Ep (W) = L Ted (EW- T) (AW -T)}

St te grodet wrt W o 3ero vecbor, So we obtoun the

S S ) ~—~ .-
Mminwmi2ing.  Solubien  of Ep CWwW/) Jor W/ S Sollows

W= (F %) FT= %

where XY & the  pseudo - inverse oF K ~ The Jiscriminont
Function s @iven by yegy = W R = -\TT(?Z*)T')E.



W . the Fa.vmeber mobr X who se K% olumn s W
W the rodrie whose " yow s vl

Then EDCW/):_‘)_.TV-#Q)’(W/ +1_W/:-“I|')TQX(W/ +1W/:—T)7

T T
where  k-dim 4= CL, L1 W= (W, Wao, .. Wio)

/

Co\lcu lote  the dernwdive o EpCW)  wrt wy

P RK T
7BV = 2N W, t 2 (KW -T) 4
Mo X\ Axp NrK K)‘\
AN xR

kxXns



We have ob—bo«.}ned the dis crmi nant  Sunction using, least sqQuave
approach. Yoy = WE =T () %

~r ~ "\ ~

(T %) %'

This  Jccriminant  Sunction does neb  hove any probabilistic

where ’722"'

inberpretation  ond ik net  robust bo  edfliers  (least squave )



Leost square
opprooch

SSC Fenad'( 2cS le's'l:ions
Hot Ove 4o conect
in that Such Fo'm‘bs‘

Cgo-lr $vom bwmbvy)

-4 -2 0 2 4 6 8 -4 -2 0 2 4 6 8

Figure 4.4 The left plot shows data from two classes, denoted by red crosses and blue circles, together with
the decision boundary found by least squares (magenta curve) and also by the logistic regression model (green
curve), which is discussed later in Section 4.3.2. The right-hand plot shows the corresponding results obtained

when extra data points are added at the bottom left of the diagram, showing that least squares is highly sensitive
to outliers, unlike logistic regression.

6 -6 -4 =2 0 A 4 6

Figure 4.5 Example of a synthetic data set comprising three classes, with training data points denoted in red
(x), green (+), and blue (o). Lines denote the decision boundaries, and the background colours denote the
respective classes of the decision regions. On the left is the result of using a least-squares discriminant. We see
that the region of input space assigned to the green class is too small and so most of the points from this class
are misclassified. On the right is the result of using logistic regressions as described in Section 4.3.2 showing
correct classification of the training data.



1% Fisher's Linear discriminant

Considy o bineor cdassification  in terms  of  dimensionality reduction
Inpit 4% & R’

Considr oo prodection +o  one dimension using. W

Y= WIT#

’TW"QS hOH Wo on )’ . Se S y 2 W, then ), (s clogsifed
as doss C, otherwise closs Cy

ConsiRroble less  of  informotion  ond overlaupp'm% in  one dwmension



Groal: determine W or  seledt  pralection  moaximizing the clogs
sepawntion
Consider oo two  closses Fhelolem wibh N, ponts & clas ¢

ond Na  powts oF closs oS- Cy

The meon veckoss of +Hhe two closses

mi, «= Xl/_ D ¥y mi, := L > =%,

‘' neg ’ Nao neCy

First choose w +Ho maximize the dJdifSerence of projected wmeons

My =M, = W' Cmi,—mi) where Mg o= W M



We  constimin W  +o hose untt  lengbh, e S wit =
Usingg. oo lagronge  multiplier , we  $ind

W oC Cm, — m,) (see Fig §.6)

Second  considr o small  vomante  within exch  dass

The within = class  varioanee of the +tronsformed C projected)

Jochon Srom class Cg [(3 given by

p =
Se:= X (Ya — M)
neCe

-
where Yo = WHn  and M= WM



The Yeher critenon MOXI ML 2,

2 :
M, — m bebween — class  Vvorance
(% 26) Tewy := M ™M)

p R 2 N . M
S +S, totol  within —closs varance

W Cm — m) NS

Jw) = - -
T (W% —-M) + T wwigm—-m)
neg neC,

I WITcm&L—M\.)\ltz Lw e miy —m)] [ w'om, — wu‘):]T = W dgw

where Sg = Cmiy,—wi) Cmy — m) C§20)



W/

S, +S., = 2 Cw (A, - m>_’_] 4

neC

| 2
= W/TSW 7/ \‘\//-rgW

Stz T Uh-m (HK
neCe

W\
3
1

C

wy ¥ SB W

wit S, wr

J(w) =

D= dim IXP  PxXp PpPxX\

> Cw' % -MI,_)J

'\eC;_
_ T
W= W' S, W

-"'“:)T, k=1, 2

Sg © between — closs

Sw: within - class

2 =M (&= M‘.)T + % CHhy—My) CHy — M,_)T Ce&23)
2

covarfonce  madrix

covarionte, matnx



Differentioting  Joewn) wrt  w, we fund  Jow) s moximaed

when cwTSgwr) S, W= (WS, wr) Spw (%2a)

s -l s -l

We e used Vi (W/TAW/) = w' (-A+AT)

By e2M) C&F o Sg), SgWw s in directien oF i, -m)

T
(miy — i) S M) W (Mg — M) CMy — m‘.)T == SB
\Xp  Px|

And  drop  the salar  Sacors  ( W' Sgw) and (WS, w)



Multiplying.  both sides oF  C(F.2a) by S’ ., we then obtoun

-
W/ CC SW (,W\\,_ - m|3 C-‘F.3°)

Mote thadt &  within — clag  covorione s isstropic ( Sw = AL)
then Solution Y/ FVOFO"’E(OV\O\\ +o m, - m,

(4.30) s known ag Fisher's  linear dJdiscriminant . Ths ¢

the diredion Sor  projection oF the Jdidm  Joun o 1 Jdimensin
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Figure 4.6 The left plot shows samples from two classes (depicted in red and blue) along with the histograms
resulting from projection onto the line joining the class means. Note that there is considerable class overlap in
the projected space. The right plot shows the corresponding projection based on the Fisher linear discriminant,

showing the greatly improved class separation.



1.5  Relation 1o least squares

Two  opproaches o  linear discriminonts  Sor  two ~ class  problem
The leost  squares  make  the  mod| predichons  ag  close
os possible as o o seb F  tageb  weldues

N

NS s
Minim| 2 2
n=

b R

( WT /)5\(; - 'bn)
)’L#n)

\

The Fisher criteron  wos Jderved by Veqa'\rin%_ MOV AW

class sepavation  n the |-dim  eutput  gcpoce



Lt us see  the  reltionship between these twe appreaches,

We will show that the FPuher critenon con be  obtained
as o specel case  of least sguores,

LleE M Cresp M) ke % o paatems in class C; Cresp, G)

Toke the targt walues S class o be M

This toropt value, opp rox( moctes the tnverse oF the prior

Fm\nbi |'(t7 oo clag G

For clss G , take the Targgts o be - N/ N,y



The Sum — of — <quores error  function Con be whrttiten

A T 2 - 2 -
E:-—izc.\”/#"'\'wo—"?n) ‘l-'»n"/v' or Na
n=\
#“G\RD W = (W, Wp)T

N
% = ZLW/T#,,+W°—-E¢.) = 0
o n=y
A% Ny
Ve E = ’\Z_‘ (W hq + Wo —tn) ¥ = © C#33)



To

Wo = — W' mi CE3p)
b 'mPu'L‘ dodto. st  and
#n = 7:—,(Nl m, + MM,

(S



C & 23) con be written (Cxercse. W 6)

NN
C Sy + = 5g) W = N v —m)

where Sy s defined by CE23)  ond S s &Sined by

C#.2N),

Snce  SgWw s dwys in direckion & my-my,), we an

write -1

where we have  ignored  jrrelevant | sawle  facbors



We howe also found an  expres Lon for the bios vl ue

Wo = wr' m. It meong that , T clasified o Ioelong«'ng

o  cogs C of Yer) = W Lk-m) SO,



b 1.6

Ficher ¢

wLoG . assume

The

of k

where

ernerol 2otion

discriminant Sor multi ple closses Ck > 2)
D > k
o within — covarjance monx  +to +he cose

clogses  Sollows

Kk
SW = 2 S\: Cwnpb space)
K=\
Sp i T (Ha— M) C Ky — M)
ne (e
Mg = L T K

Me neCe



where N = 3 R ot Pa&ttems n Ce

ConsiRr the toba.l covarione OBt X

N .

§T = Y L& — M) C¥%n— M)T Clinpab space)
wheve m( s the, mean of the total Jobon  seb
w‘rkln'm - c\ass covar once, MOdJ".()( Sw and oan OWH‘(‘BOI'\O\\

Mmodrix  Sg



We '\de,\{;}f] Sg o8 a  meosure of the  between - close

Covou on
< T
L 46) Sg= T Ne CMg—m) (Mg — m) Cinptt space)
=
| D~dim
Next we inbroduce D' >\ | in@aur S'ea:bur‘es' Ye = W/g ¥
where k =1,.. D, (P-dim  weght wy)

The weight vecbor { Wi| (n be considered 4o be the

olumns F o motrix W Cpxp’) so that

W/T - T '—4°
p —o Dr b4 W% b L



Now  &fine  similar modnices in the projedt D’ - dim Yy - spoce

K T L, ‘
Sw = = L CY¥a— M) (Ve = Me) (DD mabrix)

k=2l neCg
ond
K T . .
S = 2 M e =) (el (B0 i)
where
\ < |
- = . e
Me Ny zq: \7n , ML= Yy, ‘;‘ N My A/ E‘ Vn



To Jdetermine \M/, we need 4o Efine a scalayr (benefit)

which is lowge when Sz s lage od  when Sy & swall

Consider Jow) = Tr{ Su' Sgf Feobsre
i Spase
DxD

Th‘( c C"‘( _&r\‘ on con b% \JW‘FHZQV\ 0S on Qa(?l‘(C.‘('b 'fuﬂC.t\(O'l \\V\ 'I:ke

Sorm Jowy = Tr 4 LW/TSW W/ )-‘ ava Ss vv/)j

PxD Pxp DxP’
weut  space



—_— me C(_k (,,6) Ldéf‘ d" SB) ) SB ‘tS +he SuUum o'J" K vvocl:rices
ord eoch ofF which (s s§f rank |

Qecause. o the Jefintion oS i Oﬂly Ck-1) of these

mobrces owe independent
— Thuas  Sg  hes ronk ot wmosh Ck=1) am <so +here

e o wost  CE-1) eigenvalues .
~ Seo bhe prodectin  onto  the (k-1) dim  subspore  sponned

by the egpnvectos o So Joes not  change  TLw)

More than (k —1) lineor ‘features’ ore  manningless



U 1.0 The Perc,ep‘tror\ a.l%or:d:km ( linear disomnont  mode] )
Two — class  clossiFieation

), 4 ‘\r\Fu‘t' vector

B ibs  fexbure vedr  Sor oo Fixed  nonlinear  Sunction QO

Linear mode] of +the Sorm

YOE = ‘S-QW/TQ();()) ?amnebewr vedor W

where +he  nonlinear activation  function £C) e %‘we.n by

o. step  Suncbion  ofF the Sorm



o 2.0 o—

s m 4

<O —0

Here LK) nclude & bias  comporent  Fory =1

How +to Jetermine w ¢
How to &ej"\ ne error  fun Ct:on 0’5_ Wy ?

N\‘tSC\DSS.\ F ¢ cox oy ra:]:e. )



Percepbror\ criterion
tn =

Tdea: §  Ha s i doss C  then w o) > o

4 /” Cs then w' @ tn) £ O

Using £ €6 4 -1, 1] toaret coding we ore c¢eekig w ¢t

w' B b > O %n. tn .
th

The perceptron  cnterion s given by
Eplw) i= = S w' D)ty CES W)

NEM



where M denstes the seb of oll misclasified  pedtems

Co 4+the +Hotal ermor Suncion s Plecew'«se linear  for Wy
If % s corredly classifiet then the contribution 4o the
exror (& 2o,

Thee  obochastic gradient descent  algorithm to  this  ervor

cTtl) cc) )
= W - ) UEtwy = w40 U,

where 1) s the  loornig rode  porowveter, (pat N =)



¥  the pettern s corvectly  classified then W remadns  unchanged

In case it ‘ts \ ncavec‘b\)r clossis = ,

we ol Blk) onte te et  estivede & w

whilt  $or C, we  aubbroct GCkn) From wr

2

. 5 . ° - ° - °
(] ® L] [}
o \® o \® °
057t 057 1 057
. )
0 0r 0
o C) °
wy
-0.5 - -0.5 ° -0.5
L ° °
' : ' -1 ‘ , ' -1 : : : -1 : - :

-1 -0.5 0 0.5 1 -1 -0.5 0 0.5 1 =] -0.5 0 0.5 1 -1 -0.5 0 0.5 1

Figure 4.7 lllustration of the convergence of the perceptron learning algorithm, showing data points from two
classes (red and blue) in a two-dimensional feature space (¢1, ¢2). The top left plot shows the initial parameter
vector w shown as a black arrow together with the corresponding decision boundary (black line), in which the
arrow points towards the decision region which classified as belonging to the red class. The data point circled
in green is misclassified and so its feature vector is added to the current weight vector, giving the new decision
boundary shown in the top right plot. The bottom left plot shows the next misclassified point to be considered,
indicated by the green circle, and its feature vector is again added to the weight vector giving the decision
boundary shown in the bottom right plot for which all data points are correctly classified.



Remork
— In view oF  4SH) ad C¥SS),  the contribution to  the

error  from oo misclassified  pattern will  be  reduced

cTH)T Co)T T
— W P th = - W Pum) £y — C U 1) P )

Suingle

component —of  Ep
where we  have et N= 1 o used N B E Il > O
— This does not He contribution +o the error Sunction

Stom  all  wmisclassified  pattem C other )



- T\ne c.hw\qa 'm \"Y/4 My have c.oM&ed come Phe\/'wucly
c.o\'V‘e,c‘bly clossSied  pottems  to beome misclassiFied

~ In cse thed  Hhe bminmg dida seb 5 linearly ceparable,

Pevcepf\'on {eoum'm%_ a\g-ori-bkm s g,uauwen‘l:ee&\ +to Find an

exact  solution n o  Finite number  of  sbeps
(by percepbron  conversence  theorem)
~ Perceptron  dom  net provide  probabilistic  eubputb
T Cn nt preralize K > 2 clases

— based on lmear (ombinabions of  Fixed  bmsis Funchions



X

— &£ . S/, 5/27
— B%: 6/3 (HA)
— N™. (/10

— &9 4/ 1M+ 22R)

Bayesion concegl, prob. Jist. Repression closs it coction

kemel wethed ( &rP . SVM)  Boyeson neural network



Lincar mokk Sor classiF cobion

Discriminowmt  Sunchon £n
o

RV R AL S ¢
—  Fisher YK = W' %
- Pe"ce’i’%“ Yeg) = §Cwmdw)

Proboblistic  modkls PLR lcg >+ 2d
— eonered pLH)

¢ i PLCL#) —

—  disariminative



U2 Probabiliste Crenerctie  model

Discriminobive and  generaive  approaches o classificotion,

Consier the cose oF  two  clages.

PC% | C) PCSY)

Gl k) =
PCats) PCRIC) PCC) + PLX [ C) PCCL)
CE.SN)
(
= =: 6-Co)
'+ SXpC~
pL=a) oqistic  Sigmoid
where we have  defined

PCXxIG) pCC.)



REMW"L'- OS- S‘UQ.M o‘cé

- Boum‘e:\ ‘furl, ton

- S Mme:l;V\/ meer‘l'q' 6C-a) = | —67Co)

— The inverse of the logickc Sigmod s given by

o= Qn (%) \ogit— Sunction



K > 2 clousses,

PCCelry = PCHICE) PCC) _ exp C®)

2, PLAIC;) pCey) S, exp Cay)

SoFtmax  funcixon

which s known os the normalized  exponential C mubrclass

gerernnlizofion oF the  logistic sigmod). Here Qg are  defined

by O t= &n L PLX\Cr) PCCe))



&4, 2. | Continuous  inputs

K e IRD contmuous  vector PCY | Ce)

Assume  the dag — conditional dnsities are GCGaussian  and

oMl cClogses  share the some  covarone  mabnix (only di's"ferent)
mean vechor

Le.

\ |
( 1) 7> PAK]

PLK|Ce) = exp -3 k=M T Cx-pMi))

Here 2 (s int\e?enob.rfl: of C,IN;S C\c .



Considr  the cose of +two clases, From CEEN) o CE58)
x— Aer
PCCIK) = (W' + W)

= s w) PCRLC) pCCO
(o= 00 Lot
where we have defined

~|
wiz T (M —/M:_)
wo's ~SM T M 3 Ma T M F Ao

Pewmuse oF +he assum Ption of ctommon covamonce motrices, it
becomes .  lineor SKynction of % in the argument o the

logistic s(gmoy,



Tku$, Rcision boundo\vy C % st PCl %) = C ) S o~ lwnear

Sunction  oF %,

T"\e Pﬁor' P CCe) erter on ly 'HlH)vg,k the btas Famme’T e

Wo .



Yor the opneral cose F K > 2 classes

Shared

A OK)

ovorone  matrx P} PC%\ Ce)

O () 1= W/I# + Weo

(s  ogosn lineor  Function oF X

under the assumption

exp Cle)
% exp Ca;)

PLCel®) =

O = (P LH1CK) PCCi))



conditional density pPCxVCe) has  tbs  own
2 ) then the concellotions oF quosoctic

will  no longrr ocCcur,

quadratic  funchions oF % %iv}n%. rise

dis cre m nownt

2.5

1.5}

)

—_

e
T .

05t g
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Figure 4.11 The left-hand plot shows the class-conditional densities for three classes each having a Gaussian
distribution, coloured red, green, and blue, in which the red and green classes have the same covariance matrix.
The right-hand plot shows the corresponding posterior probabilities, in which the RGB colour vector represents
the posterior probabilities for the respective three classes. The decision boundaries are also shown. Notice that
the boundary between the red and green classes, which have the same covariance matrix, is linear, whereas
those between the other pairs of classes are quadratic.



1.2 Makimum |ikelihood  solution

Two dases  clossiSication

Debon et { #a, Bl , M=t A wel®, b= | o 0
th= | dendtes class ¢, o t =0  denctes class €,

Coussion  class  conditional der\s'dy with o shored covorgnee wodrix



Denste  the  prior closs Fmbala‘cllt7 PCC) =R, so dhb  pCG)

= \-%
n Srom class C, tn =\ hence

PC¥a, C) = PCC) PLICG) = R AUC Kl M, )
S‘(M“aﬂy ) Sor closs G, th= © Shared covariance

\

P Cfan, CG) = PCG) F(.#A\C).): C\=-Z) N ( Kn \/“z,I)



Thus  the  likelihoed  Sunction s given by

N -
pLt, Kz m M, 3)=T [rn me\.,sﬂt" [ G-")N Dﬁnlﬂ‘li)]' -

n=f

:
where 4 = Cbi,.. £, X=(%, %, . %)

As usual, we woximze the log of the likelihood Function,

Consider  Firetk ™. The log likelihood Sunctlon of = s

N
> 4 tan £ Cl=tn) In (1 =R)}

Nt



Setting.  the  denwdive
re LS g

N s
where M Cresp. ) i

wrt =R equal to O, S0 we obtmin
A m,
= — = C, ©l
N N, + M, 3
¥ of PO‘M'ES n C\ C resp. C;_)
< Flf the S$roction of- Pctﬂ'lﬁs




Now  consider the moximization w.nt  m

The temwms oF lO%-m‘eR hood Sunction depending. on M

N N i
S b0 QN Ch L, T) = =5 2 tn Ch—pM)T T Ch-M,) + consbart

N=l n=t

Cetting He Rrvbte wrt M to 0, we ebimin

which © siw\?\y He mean of veckors %, ossigned = C)



Similarly ~we  con obthin the result Sor M,  as

N

My = i 3 Cl—tn) A&,

n=A

which agrin  is  the memn of veckos %, ossigned 1o
Finally  consider the MLE  solution $or X Pick out +the

terms  in the  log  kkelihood — Funchion qlo.,:enq\‘w%. on 2 we hwe

N

L Jankn\Z\——z En Cham i) T (ot — )

n=\ n={

‘ N ( N T ~\
-3z Xz U=t I 1] =2 2 (L =Hn) Csa=piy) T7 (0 — M, )

N=A n={



— —':j/lanl = NTY"I-‘SY

=2

where  we  hove defined

\ M,
S = —K,N— Si =S,
~
S = ";‘ gc‘ (%0 =MD C &y — MO
~
3, = %/' 2 Ut =M (o = M)

neC,

4\"
T‘\\A§, we see thaf > =9 (vh\i\z(Z)

VT,-{ Z-‘S‘( = - (7_:\5 f')-r



2.3 Discrete  feotures

Conser He wse o dsoebe feobwre volue L

For simplicity , assume X3 € 10, 11 and D -—diw vechr X%
)K = C—i\l Ay . o X'DST
Here we will make the nauve Bayes assumption (the Seature

volues ore  breated as  independentt , conditioned on Cy)
Le. PLXXNlCe) = PNIC) P U] Ce)

Thus  class — conditional  distributions  are given by

D b X I-Xx
PLK 1 Ce) = :ﬁ‘ PGilce) = T\: Mear Ct= M) CE81)
- -



which contin D independest  poroweters  Sor each class.

=X

PLX 1 C) = Me L= M)

Lte oL}

Met G 2ve Db X =

Substihuting.  inte ch63) (R = In( PLKicy) Pece) )

p
M= 2 1% M T OXD La = M)t + Ln Pece)

A=t

which ore linear linear funcbions ofF x5



I3  Probabilistic D'iscrimi notive Models

Fiding  the punwmeters  of o  geremlided  linear  moRl

Crererbive  moel v dissciminadtive Mot

Cindirect) (direch) P(Ce)
P(A,Ce) 7
Crenerotve mokl @ Fitting  doss  conditional  densities pax | Q)

ond  closs  priors  separodely and  blen  applying Boye's Theorem,
Dscriminative modl i:  Moximizing o likelihood Suncbion defined  throwgh
the conddional  Jistribution  p CCel %)

Remarks oF  two  opproaches



Lf’. 3. | Fixed boss &Andﬁons

Do) . Vedor of  bais functions 3 %, . Bl A=l
We wmake o Fixed nonlinear boncformotion of the inputs.

The resulting decision boundowries will  be

non lineor in the

onginal nput K spoce Clneoar  in b Sedure spase )

We  shall nclude. &  Fixed basis  $un

don  bronsformotion R O2Y



For Many pre blems in the re  world , there s o s{gﬂf\ corit

overlap betueen the class — conditional  densities Pk iCe)

pokl Q) v L PLx G

X C in‘:url: spoLe )

Note Huot nonlinear  transSormation commst  remove  such  clogs

OV?rla.P. e s trangSormotion @n moake it posible to

QQPN'OC‘B Po}n-l;s thet ore nét linearlf 53leeqm_

Suboble cholces ofF  nonlineority con moke  Hhe . i

process o wmodelling. Lhe posteror probabilities

easier.




3.2  logistic regresion

Two = cdagg  classifi codion

In section 2 CHSN), we saw that uder rodler eereral

ossumptions ,  the posterior  probobility of class ¢ @n  be writien

o> PCS L) = YCP) = oCw'B)

with PCGLIE) = |- pcalE). Here o) is the logistic

sigmoid  Function ond B s the Seattre  wvechor e §=9M%)



Yor M - dim Seotwre Spose , ths model has M adjustable
l'u\w|7
porometers  Cw),

By controst , Gousion clos comitional densities mode| using
mosimum | kel hood method neels 2M Pamme'lzrs for mean
vectors ond MCLMt1) /> porowmeters sor shared covariance

Motrix. Together with  closs prior  this gives o toto

o MM+ G)/> + | poroumeters
quodm‘bico.“y



W

PDetrrmine  the parometers of  the logiste  regresion  mokl,

Uce MOX| UM likelihoced  method.

For o dodo. set "@n,‘bn‘{ where ta € 40, 1  ond ;‘f_ﬂ= P 1)

with nN=(,2, ... N, <+he likelihood $unction con be wrikten
N = tn
P(,’H:IW/): T[ Ya ‘Sl"\/n'( 4t =0 or |

n=j
where 4= Chi, ba, o By) oM Ya= PCGIB) = 6w )

o | ~tn o=t =0
F(’tn\“//); Ya Cl=Ya) th= O or\, ts FlecﬁOn Ya or "V,

/



Negotie  logarithm oF the  likelthood  which gives the  cross -

en‘bropy error  function n the Sorwm

) N
Ew) = —LaPCEIWY = = Z {tnfaYa + Cl—tn) Lali- YY)}

n=1\

wk?Je )’,\: S COn) , QAa = wy T Q“ wtth én .= ?%)

The grodient oFf the ermor Sunction wrt W ¢ given by

A basis vechor
Vo ECw7) = 3 Wla — %) & Cyal)

n=t

error

We loe used 'jTZ:: TCl~0o)



From  kAl), we on ue a sequedtioal algorithm  The

weight wvecdor Wy s updoted in whech VE, 1« +he

n‘"'h terwm \n CEal).



$.3.3 Tteroted reweghted least  squares

In the ocose of +the linear regression mokl , MLE
solution , on  the  assumption F o CGrousian  nose model,
leads to a closed — Sorm solution.

For  logstic regresion , thee ‘s no  longer a  clesed ~ Sorm
Solution. However the exor function Eww) (s convex . Hence

thee © a unque M(N{ MUm



The exvor funcbion con be m‘mim'(%e:\ by oan (terodive -l;echn;que
bosed on Hhe MNewbon — Raphson iterotie oP'L"(m'( wtion scheme

(Fletcher 18N | Pishop ord  Aobney 2008 )

(new o) -
W/ ): w/ —H V EWw)

where H © +he Heston wmabnx VVEW) wrt w

First, 0*{’?'7’ Newton - Pthson o +the [inear  regression

mode] _ < T - &' T
U, EW= X (W ,-t) 3,= D Ow- D¢
n

H= VVEWwW) = §T§ Cinep o W)



where 2 & e AxM design  mothix whese nth o

s gven by Bn So
N N L T B
_ wc.olé> E @) ‘{QT@W/U)H)— @Ttt
= (8¢) &7«
« the stondod least — SGuares  solution. Swee the SSE s
the quuirotic Sorm o W, Newlon — Raphson Sormula.  guves

the erack solution  1n  one ctep




@ opply  Newbon — Raphson o the lo%'(s'tic. re.%sﬁon

mode| with Cross - eﬂtro?y ervor -func:ﬁen

=T
wr = b - no ?_—M)
ad T T
H= ViEw) = 2 %C-w 3,3, = ' R
where R s the INEVLY, d'(mg.onod motnx with elements

Ron = YaCl=Ya) Y= ~Cw §,)

Hee H s net  indepedent & W, S the emor  Sunction

ts nob quodirotic  form T Wy,




Since Yo = LW Flm)) oxercise IS

0 Yo <l o W H U S o sor Y ue R

So Hegs on Mot H s pos e  Jdefinte. Hence the ernr

Sunction  E s o convex function S W oand I minimum

WIU\QW) - WI_C.ON) . (ir R §)" iT ('y _ ‘&)

— (QTR§)~‘ ﬂ @TR? w/cok\) _ QT(-V"‘H')?

= ( @‘Ri)-‘ $ R 2 L499)



where Z +the N — Jimensional vector with

R)

¥z & W R CY-)

/4 [east - squanred
Readl +the MLE solution For Wy o5  te linear re%regsion

Wiae = ( @T@i)— §T t

Vi

(¥.q9) 5 +he form & o set oF normal equabtions for a

weighted  least - squares  problem.



The, wz(qj\'ﬁng, Mocbr-'(x. R Es no‘b cON ;'l:am‘t' bu’b' de,ferdg

on W

So  we  must apply the  permal equations  iteratively

For thic reacon,  the olgorithm &  known os  LRLS

terotive  rewighted  least squares.



4 3.4  Multicloss logistic  vregression

In section 4.2, we dscwssed the gerertive  mokls o
multiclass  cdassificotion.  The posterior  prombilitiec  ore given by
oo soStmox  trungSormotion of  linear functions o fexture
var{ables

exp C Q)
Z; ep )

PCCleld) = Y (@) =

where, the acbivotions O are ¢given by

A = W, & P =(gw, .. B, )



Theve we used MLE to Jetermine -] Fu,yod;el)r Ehe Groussian
class — conditionad Jenscties ond the class preors ond  then
Sound  the  correspending  pesterior  probabilities ,  thereby

implicitly  ®terminng.  He  porameters  { Wef
Cindirectly)

Here we consier the (se of mosmum  likeliheed o

debermine the  poaroemeters {wie|  oF  Bis  model  Jicedtly



e o one ot  veder ®, . Ffecbwe vechr

r

The |

kelihod  funcbion i« given by

o= #

NoK \ NOR g
PCT Lwie we) = T T PCCiBY™ = T T Yo

Ny k=) Ny k=)

where Yy\\g = YeC Qn) and T & an N XK vodrec  of

toreet  voriables  with  elements Eng

d K te
pLt (W, .we) = T pCGlf ) #= one het vechor

» e

ol wepht vedor§3 BHGE target 4 b WE Q_i

for some Fwet n, 2, tne = ) 2 Toe =1

/7



Taking the negatie logarithm  dhen gives

vNooK
ECW,,.. W)= —L2n PCTIW o W) = -7‘ 2 tre &n Vg
n= e\
which © krown as the Cros - entropy  error Function  Sor
the  multicloss  cosifiantion  problem

Note +Hht +the dJeriwdives oF Ye w. ht adl A

J L)

Y
30::\/{;(,1-;:;,—7&) (YI:-_-

exp C )
Z; eply) )

where Ty; oare  bhe  eements o ety matrix



We now {oke 4Hie grodiest & the emor Sunction w.rt

one o the parometer  vectors W/,

J e

N bosis  Sunchion
Vg ECWi. W) = 2 Cing = Bny) €4 L& (0Q)

Ny
preddiction

error

where we have, uses 2, The =1 .

Nobe Hht we cee Hhe some Sorwm  arising  for  Hhe
grodent as  wos  Sound  Sor SSE with  linear regresion

ad  the Cros — enbropy ermor  Sor  bhe logistic  repression
mode]



So we con use His to  formulbe o sequential  algorithm,

Tn  $his cose  each of +the wefg.h‘l,' vecbors s ufda:bed

¢ cetl) cT)
USing, W= W — N YE, €3.22)

Now +o 5id a botch olgorithm, we appeal 1o the

Newton — Rophson  updote 4o  obtmin  the  corresponding. TRLS

ME X MK

olgorithm. The  Hessun  mobnx  that  comprises  blecks of  size

MXM  in whch block 3 k s given by

N
T
Vw/J V\V/K E c—w( W/k) - E\ anCIK} - Y'\J) Q" ir't



This  Hesion  motrix  for  the muticas  logistic  regresion  model
s positive definite oW so  the errer  Junction again ks

° \ \
O- un(que m(NiMuwm,



4.3 Probit  regression
Consider the two - closse  cdassificocton am  the  Sromework  of

qanem\‘(%eé linear wmo<kls So +that

PLE=l o) = 5coy

where = W' ¢ ond JC) s the activatbion Function,

Consier o noisy  threshokd  mof. For each  input

5 = Tlk), we ewlude on= WP oM  then set

the bt wolue  according o



tn = | o Oon 2 6O

Hn =0 otherwise

If +the wviue G ~ PCB®), then the corresponding.  achivotion

Sunction § wil be aiven by

o,
Sy = pues

-0

Figure 4.13 Schematic example of a probability density p(0)
shown by the blue curve, given in this example by a mixture
of two Gaussians, along with its cumulative distribution function
f(a), shown by the red curve. Note that the value of the blue 0.3
curve at any point, such as that indicated by the vertical green
line, corresponds to the slope of the red curve at the same point. ¢ |
Conversely, the value of the red curve at this point corresponds
to the area under the blue curve indicated by the shaded green
region. In the stochastic threshold model, the class label takes 0.4 |
the value ¢t = 1 if the value of « = w' ¢ exceeds a threshold, oth-
erwise it takes the value ¢ = 0. This is equivalent to an activation 2t
function given by the cumulative distribution function f(a).

1




As a gpeciFic  exowmple PLOY = &4(0)

Se
= Swy = | § o~ Z G, otherm se £ co) = O

In oXttion Pw = ANCE&| o, 1) the corvesponding, camy lotive

Jistribution  function s agwen b y

a.
O Ly 1= 5 N (&1l e, 1) 46

- OO0

which s known as the inverse probit  Junction



Remark

It hos  sigmodal chape
The wse ofF o general  CGroussion Joes
erf  Sunchion

ers Co) = \%.\ g: exp( —60") 46

Figure 4.9 Plot of the logistic sigmoid function

n6t change the wmolkl

o(a) defined by (4.59), shown in
red, together with the scaled pro-
bit function ®(\a), for \* = 7/8,
shown in dashed blue, where ®(a)
is defined by (4.114). The scal-
ing factor 7 /8 is chosen so that the
derivatives of the two curves are
equal for a = 0.




e&r§ Sunction s re loted +o the (nverse Pmsz £ unction b)r

é () = .12.. { t+ ert (%)% exercise

The generalized liner  wokl bossd on  an inwerse  probit

octivation JSunction s knewn as  probit  regression.

Remark

— The probit moded s cignificontly more  @nsitie to  autlers,
~ Sigmoiy exXp - L) Vs inverse  probit exp C~%)

0S X —H 1t oo,



% The Llaplase  Approd motion

Th cefin #S we will Jdscux the  bBayeson trestwment of
logistic  vegression. We comct  integrde  exodtly  ower tee
paometer  vectkr W sinee  the posterior  distribution  is  no
longer  Groussian.  So & i necessary  to  introduce  come

form o app rox( mation.

Now we. ntroduce, +he La~!>\o~c,e osPP*'O)C‘( mation , +thod OUMS

S5\ & Goussion  approximation  to unknown  prob. Jenstty

deSined over o seb of continuous variobles .



2: Single continuous  varioble

sqppose the  Jistrbution PC) s JeFwned ‘Dy

l
PC.%) - Z TR

were Z e a  nomalization constont  ong ossumed  to  be

unknown

In the laplce wethd, the goal s to £id A Coussan

approcimotion  qC2)  which s centered  on oo mode & PCR)



Fist  Sid oo moke pLe), «.e. > st $iy) =0

d503)
<2

\ = O
=%

Note  that 'H‘le log-au'"({:hm O'S' CTMSWM <ll<;b-'( W‘:‘LOV\ .($ a
quadrotic form &  varobes, Therefore & Taylor expension of

h 5@y centered on e wmole B s giwen by

a5 > k) - + A CR-)

where A= - -i%-_ Ln &)
=2



Tokng +the  exponentiel we  obboun

A
S o Sy expi- -i-c%—a,)‘{

We con then obtin oo normalised  Jdictnbution qc) so that

qw = (-_':;)/L exp § - £ Ce—&)"r

Nobe  thotr o will only be well Jefined 5  ibs precicion

A0 ( 3 must be lowd mMaximum or 5't3) <O )



F: M- dm vedeor

Extend the Loplace method o app roximade Pwxy = S/ 2

A a gb::lionav-y port  F,, UER) will  vansh. Bxponding

oroun +this s‘hxhovury Po}vfb 2o we hove

Lo $W) = LaFQ@) — Le-2) A (- =)

where Mx M Hession mMoabrix A s eefined 197

A= -UV 2 S,



Toking exPcnen‘tiOJ we olbtonin

Sey >~ Soz) exP{——;C%-%s)T AC?"'%a)t

Thus

)
LAL®

C2%)

qL) = exp{ -3 (-3 ACT-)[ = VLI % AY)

M2

wiere 1Al denotes  the determinont S AL
As before this Goussian will ke well defired 1 A s

positive  &fintte .



Revork
— Need +t Sid o Mo Fo and ekt  Hesian wmatrix,

— In proctice, o meode  will be  Sound by ruming some

form  oF numer cal Of‘t‘( wm( 2oEion ou\caor‘d:hm
=  Limtodions oy mulimoldal cose

— MNormalizotion constont 2 Joes not need 4o be  known,



As  well as opproximetiing,.  the JistHbuton PC) . W con

obtodn on opproximotion 1o 2

2 = §5cwdy = Faw | epi-f G-t AL-wt 2




S Boyesian Logistic  Regression

The evaluodion o +the posterior distbubtion ever W would
require  normalization of the proket oF o prier  Jisbribution
and o likelihood Sunction. Note Hot  the  Jikelihood  Funchion

comprises o  product o legistic  sigmod ( by our asuwption)

e, PUIw) = T U-v) " Y=o (W)

Ewluabion oF 4dhe  predictive dJistribution s siw\i\arly intractable.
Here we consider  the axyylica‘tion oF +he LqFl&ce mprmximtion

toe +the problem oF  Boyestan  logistic  regresion



4tc.l | oplace opproxi mation
We need the eveluation of the cecond deriwtives oF the
log- Pos%ﬁrior C Finding.  the Hesstan mobrx )

Beasuse. we, seek o Goussion representztion ( app roXx( mation )

for  Hee Posb%ﬁor\ distribution we inbeduee o Graussian prior

pewy = A CLw | M, S, )

where  m,, S, are Sixed  hyperporometers,



The  posterior  distribution eover W s given by

prior li kel hood
Plwid) oC pw) pLEIw)

Gowstion P'foé&i Sy S‘\%MO‘G}

T

where H:= (h,.. Ba) .  Taking bhe log. o  both  sides.

Lo PCW [#) = —Lcur— m)T S Cur— my)

N
+ 2 Atn QaYo 4+ Cl=tn) LC1-Ya) | t+ constont

n=At

whevve, Yo = €C\WT én)



To  obtaln oo Cousion  approximation  to  Lhe Pesﬁeﬁ or
distrbution, we Figt moximize the  pestrrior distibution
to gqie  the MAP Cwosimum o postrier)  solution  Wiup
efining,  +the  meon Cmode) oF Crowssion, the covarance ¢

then %—(Ven \oy

...‘ - N
SN = - VYV ,Q4\ PC\M/I&): SO‘ + Z Y“C“Yn) inﬂ

n=\

The Gmussion opproximation o the  posterior Jistrbution

Cl(.W/) = NCW W,MAPI' S/v)



0.s.2 Predictive  Jistribution

There remoins  the take & morginalizing w.nt quw) 4o

moke  prediction Let $ =P %) be th Sobwe vecktor

The predictive  distibution Sor ¢ s obtmied by margimlizing.

wirt  pew ) | which s itsel§ approdmoted by a

Croussion  Jdistribution qCw) so  that

PCatd #) = [ Pyl &, w) pew i) dw = [ecw ™) quudw

le. PCGLE &) = - pLe 1@ 4)



Let

Yrom

where

3 C)

this

be +the Direc  deltx  function, Then we

cwwTd) = § SCa-wig)o o do

S s twl é)qlw)dw = S S Co) PCoy dac

= §,Co]

Groussiow
pPcoy = S SCo— w'd) qQlw) dw

new Prob.
Jistribution



The Dirac & enSorces o = \t\I/-r $, so bths '\n‘\:e%m\ Com Pvess"
the Sl Gousion over W into & 1-P Goussion oV o,

So P fomg  a  margim| Nstnbution  from  the  Jount

Jist i bution qew) by integroling  edt  all  directions
orthogoral o &, Tt Slows Hed Py & Crowssion.

Moz EL) = § pemada = (§ sco- w'd) quw dw ada

s>
S ) Sco-w'd)yadoqow) dw

[

§ w'd qew) dw

\t

o
-

qewn = NCw/| W0, Sy)

= W

ap &



S mi \ar|7,

2

?ab = Vor(Co] = S P co) {a[‘,‘_ EE&JII Jo-

= Squn {owTer- ol @’ dw = TS,

We hoe wused qLw) = NCw | Wuap Su ).

T'A(AQ, the varotional ap?v-oxt mation to the melldﬁve Jictri bution

becanes CE151d

PCGIE)= focm pevda = ( 57CO Nia| Mo, o) dr



This  nbmgral  wanst  be  amelyblally. S we  approximete
oy by BCA)  wibh  suibeble velue N Csey A= V)
The odwnbage o using on  inwere  prfit Sunction ¢ that
the below  imbepral (comwlution) con  be  expressey  anclytically

n tewms o©F oncther invere proJit Lunction,

( B veaipm o dn= ¢ ( m-ﬂ )

\
2 + 6‘2)/2'

( Spegelhalter  and  Lauritzen 1990 Mackay (492 b i Barber

ond B'lQL\oP - 1498a)



We | the o tmotion o) = Sy o b leeds
*PPYY pprox

te the  Jollowing O‘FP"”C\‘ motion

Ss“cas ACO\ M, o) doe == & ( k(eHpm)

where we  <efined

-
KCe>)= ( \+rsY/g) *



AP?‘Y‘"‘%' -I:h‘t; result +o C(P.fsl)' we, olbtin Lhe. OK.PP?‘QC(M":E_

predictive  Jistribution  n  the  fSorm

PCC L@ &) = (ks )Ma)



